

0x Protocol
Security Assessment
October 4th, 2019

Prepared For:
Amir Bandeali | 0x Protocol
amir@0x.org

Prepared By:
Gustavo Grieco | Trail of Bits
gustavo.grieco@trailofbits.com

Michael Colburn | Trail of Bits
michael.colburn@trailofbits.com

Robert Tonic | Trail of Bits
robert.tonic@trailofbits.com

Rajeev Gopalakrishna | Trail of Bits
rajeev@trailofbits.com

Changelog:
October 4, 2019: Initial draft delivery
October 11, 2019: Final report for publication

© 2019 Trail of Bits 0x Protocol Security Assessment | 1

mailto:amir@0x.org
mailto:gustavo.grieco@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:robert.tonic@trailofbits.com
mailto:rajeev@trailofbits.com

Executive Summary

Engagement Goals & Scope

Coverage

Automated Testing and Verification
Exchange Contract
Exchange Libraries
Utils Contracts
Staking Contracts
MultiSig Wallet Contracts

Project Dashboard

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Fee refunds incentivize transaction centralization through market makers
2. Market makers have a reduced cost for performing front-running attacks
3. cancelOrdersUpTo can be used to permanently block future orders
4. setSignatureValidatorApproval race condition may be exploitable
5. WETH9 transferFrom often does not follow spec
6. Batch processing of transaction execution and order matching may lead to exchange
griefing
7. Zero fee orders are possible if a user performs transactions with a zero gas price
8. Lack of events for critical operations
9. Lack of validation in the makerAssetData and takerAssetData leads to unexpected
behavior
10. Transfers with zero fee amounts can log arbitrary data in their feeAssetData
11. MultiSigWallet does not check contract existence before call
12. Potential overflow in transactionId allowing arbitrary execution of transactions by a
malicious owner
13. Specification-Code mismatch for AssetProxyOwner timelock period
14. Potential overflow in MultiSigWalletWithTimelock when calculating whether the
timelock has passed
15. Rounding division errors can accumulate over partial fills
16. The Cobb–Douglas function is not properly documented and reverts with valid
parameters
17. Unclear documentation on how order filling can fail

© 2019 Trail of Bits 0x Protocol Security Assessment | 2

18. Potential single point of failure for "read-only-mode" and
"catastrophic-failure-mode"
19. ERC20 reverts during certain self-transfer
20. _assertStakingPoolExists never returns true
21. Calls to setParams may set invalid values and produce unexpected behavior in the
staking contracts
22. Malicious non-operator maker can decrease staking pool operator share
23. Non-operator makers can add or remove other makers

A. Vulnerability Classifications

B. Code Quality Recommendations

C. Tool Improvements

D. Formal verification using Manticore

E. Integrating fuzzing into the development and testing cycle

© 2019 Trail of Bits 0x Protocol Security Assessment | 3

Executive Summary
From August 5 th through August 9 th , 2019, and September 9 th through October 4 th , 2019, 0x
hired Trail of Bits to review the security of their smart contracts focused on their upcoming
3.0 version. This new version includes staking features, aligning market participants with
the long-term mission, and objectives of 0x.

The project began with a week-long architecture review focused on the proposed 3.0
functionality and its potential impact on the protocol. The architecture review identified
high-risk areas of the 3.0 protocol and areas where the codebase could be modified to
better facilitate automated analysis. Several areas of the protocol—such as the extensive
use of assembly in the Exchange contract, arithmetic in the AssetProxyOwner and
AssetProxy contracts, and state transitions throughout the entire system—were identified
for follow-up review due to either weak controls or insufficient time to fully investigate
them. 0x suggested that the future review should focus on automated testing of the 0x
protocol’s core properties.

This security assessment was conducted over the course of eight person-weeks, with four
engineers working from commit hash abd479dc68fa75719647db261130418725fd40d5 and
d21f978deff1be9321837c0d202ff188d94cb28c from the 0x repository.

During the first week of the security audit, we familiarized ourselves with the smart
contracts used by the 0x system and performed an initial review of the Exchange contract.
In the second week, we investigated the properties of orders and transactions and their
signature verification. In the third week, we focused on investigating complex interactions
and corner cases in the Exchange contract and also started to review the finalized version
of the staking contracts. For the final week of the assessment, Trail of Bits concluded the
automatic and manual reviews of the 0x contracts, which focused on the staking contracts.

Trail of Bits identified 23 issues, ranging from informational- to high-severity:

● A large number of the issues related to the order operations in the Exchange
contract and how users are supposed to interact with these.

● Using the gas price to compute protocol fees enabled zero fee orders and gave
makers a discounted price for front-running transactions.

● Issues arose from the MultiSig wallet implementation, including a lack of checks
before calls and potential integer overflow in the confirmation counter.

● Issues related to the role of makers in a staking pool and how malicious makers
could abuse their authority to add/remove other makers or decrease the operator’s
share of rewards.

● The remaining Issues were related to the ERC20 standard, missing events in critical
operations, and potential race conditions in signature validations.

© 2019 Trail of Bits 0x Protocol Security Assessment | 4

https://github.com/0xProject/0x-monorepo/commit/abd479dc68fa75719647db261130418725fd40d5
https://github.com/0xProject/0x-monorepo/commit/d21f978deff1be9321837c0d202ff188d94cb28c

Throughout the audit, we developed automated analyses to help discover potential bugs in
the code. A high-level description of our approach is available below, and tool-specific
information is available in the appendices. We delivered all code used in the analyses along
with this report to enable continuous analysis as development proceeds.

● Appendix C documents changes in Echidna and Manticore to support the 0x
contracts and maximize the code they can review.

● Appendix D documents use of the Manticore symbolic executor to verify specific
code performing complex arithmetic computations.

● Appendix E documents our suggested use of Echidna to fuzz during CI testing.

The overall quality of the codebase is good. The architecture is modular and avoids
unnecessary complexity. Component interactions are well defined and properly
documented. The functions are small and easy to understand.

However, this codebase frequently contains corner cases that are not properly defined in
the specification and therefore could lead to security or correctness issues. These cases are
difficult to test with traditional unit tests or state-of-the-art fuzzing and symbolic execution
tools. For instance, the Exchange contract relies on orders that should be filled or canceled,
but attempts to fill certain orders that appear valid may fail due to the violation of internal
constraints that are unclear in the protocol specification and are not adequately exposed to
the end user. Additionally, the MultiSig wallet contracts had correctness and security issues,
and unclear specifications.

Trail of Bits recommends that 0x address the identified issues before deployment of the
version 3.0 codebase to production. The complexity of the new staking features is
significant, and they may contain additional issues. The staking contracts were not under
review until the final week of the assessment due to their active development during the
assessment and, therefore, we recommend further review of them.

© 2019 Trail of Bits 0x Protocol Security Assessment | 5

Engagement Goals & Scope
The goal of the engagement was to evaluate the security of the Exchange and the staking
contracts. Specifically, we sought to answer the following questions:

● Can participants abuse the Exchange trust model?
● Can participants delay, block, or alter orders or transactions from other users?
● Can participants bypass signature verification of orders or transaction orders from

other users?
● Is it possible to manipulate the Exchange by using specially crafted orders or

transactions, or front-running transactions?
● Is it possible for participants to steal or lose tokens?
● Can participants perform Denial of Service or phishing attacks against any of the

contracts?
● Can unauthorized users interact with or block staking pools?
● Can operators, makers, or delegates abuse staking or staking pools?
● Can participants manipulate protocol fees or rewards in an unauthorized manner?
● Can a potentially malicious owner remove or block other owners in the MultiSig

wallet?
● Can non-owner users confirm, unconfirm, execute, or block transactions in the

MultiSig wallet?

© 2019 Trail of Bits 0x Protocol Security Assessment | 6

Coverage
The engagement was focused on the following components:

● Exchange and its libraries: Exchange contains the main business logic within the
0x Protocol. It is the entry point for essential operations, such as filling and canceling
orders, executing transactions, validating signatures, and a number of
administrative operations regarding management of asset proxies. Exchange
libraries contain the implementations of various libraries and utilities used within
the Exchange contract.

○ 0x-monorepo/contracts/exchange

○ 0x-monorepo/contracts/exchange-libs/
● Utils: Utils contains smart contract utilities and libraries used throughout the

entire codebase of the 0x smart contracts.
○ 0x-monorepo/contracts/utils

● MultiSig : The MultiSig wallet contracts are used to control various contracts
within the 0x protocol. There is one base contract, the MultiSigWallet , that is
expanded upon for various uses. Most notably, the AssetProxyOwner extends the
MultiSigWalletWithTimeLock , which extends the MultiSigWallet .

○ 0x-monorepo/contracts/multisig

● Staking: The staking package implements the stake-based liquidity incentives. It is
subdivided into several directories that implement a mix of features to perform
various arithmetic operations, including vault management, fee computation, and
several utils libraries. We did not receive the staking code until late in the
engagement and therefore only had a limited amount of time to review it.

○ 0x-monorepo/contracts/staking
● Access controls. Many parts of the system expose privileged functionality, such as

setting protocol parameters or managing staking pools. We reviewed these
functions to ensure they can only be triggered by the intended actors and that they
do not contain unnecessary privileges that may be abused.

● Arithmetic. We reviewed calculations for logical consistency, as well as rounding
issues and scenarios where reverts due to overflow may negatively impact use of
the protocol.

Components outside the scope of this assessment were:

● c oordinator contracts.
● asset-proxy contracts.
● exchange-forwarder contracts.
● extensions .
● dev-utils and test-utils .
● Off-chain code.

© 2019 Trail of Bits 0x Protocol Security Assessment | 7

Automated Testing and Verification
Trail of Bits used automated testing techniques to enhance coverage of certain areas of the
protocol. We have developed three unique capabilities for testing smart contracts:

● Slither , a Solidity static analysis framework. Slither can statically verify algebraic
relationships between Solidity variables. We used Slither to detect invalid or
inconsistent usage of the contracts' APIs across the entire codebase.

● Echidna , a smart contract fuzzer. Echidna can rapidly test security properties via
malicious, coverage-guided test case generation. We used Echidna to test the
expected system properties of the Exchange contract and its libraries.

● Manticore , a symbolic execution framework. Manticore can exhaustively test
security properties via symbolic execution. We used Manticore to verify that
rounding errors cannot be used to avoid paying the taker or the corresponding fees
(Appendix D).

Automated testing techniques augment our manual security review but do not replace it.
Each technique has limitations: Slither may identify security properties that fail to hold
when Solidity is compiled to EVM bytecode; Echidna may not randomly generate an edge
case that violates a property; and Manticore may fail to complete its analysis. To mitigate
these risks we generate 20,000 test cases per property with Echidna, run Manticore for a
minimum of one hour, and then manually review all results.

We evaluated 135 security properties across 21 contracts. In the process, we formalized
and tested a variety of properties, from high-level ones regarding orders and transactions
in the core of the 0x protocol to very specific and low-level ones in basic libraries like
SafeMath and LibBytes . As we detailed in issues TOB-0x-003 , TOB-0x-015 , and TOB-x0-017 ,
some general properties of the Exchange orders were not simple to formalize. Defining
low-level properties was generally easier, since the properties of integers or strings are
universal.

Regarding property coverage, the core of the protocol, consisting of the Exchange and its
libraries, received substantial coverage. The MultiSig wallet received a moderate amount of
coverage, and the staking code has a minimal number of properties.

Exchange Contract
Exchange contains the main business logic within the 0x Protocol. It is the entry point for
essential operations such as filling and canceling orders, executing transactions, validating
signatures, and a number of administrative operations regarding management of asset
proxies.

© 2019 Trail of Bits 0x Protocol Security Assessment | 8

https://github.com/trailofbits/slither
https://github.com/trailofbits/echidna
https://github.com/trailofbits/manticore

We identified security properties for each contract used to implement Exchange. Each
property listed is valid regardless of the state, initialized or not, of the Exchange contract.

utils/contracts/src/Ownable.sol

Property Approach Result

Only the owner can transfer the ownership. Echidna Passed

If the owner calls transferOwnership , the owner must change. Echidna Passed

The owner cannot be transferred to the 0x0 address. Echidna Passed

exchange/contracts/src/MixinTransactions.sol

Property Approach Result

ExecuteTransaction will always revert when using random
inputs.

Echidna Passed

batchExecuteTransactions will always revert when using
random inputs.

Echidna Passed

executeTransaction and batchExecuteTransactions cannot
be used to call any "administrative function."

Unit tests Passed

The same transaction cannot be executed twice. Unit tests Passed

exchange/contracts/src/MixinTransferSimulator.sol

Property Approach Result

simulateDispatchTransferFromCalls will always revert with
the error code “ TRANSFERS_SUCCESSFUL. ”

Echidna Passed

exchange/contracts/src/MixinAssetProxyDispatcher.sol

Property Approach Result

Only the owner can register asset proxies using
registerAssetProxy .

Echidna Passed

If the owner registers a new asset proxy using
registerAssetProxy , the call to getAssetProxy returns the
proper value.

Echidna Passed

The 0x0 address cannot be registered as an asset proxy. Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 9

It is not possible to unregister or change asset proxies. Echidna Passed

exchange/contracts/src/MixinProtocolFees.sol

Property Approach Result

Only the owner can update protocolFeeMultiplier . Echidna Passed

After the owner calls setProtocolFeeMultiplier ,
protocolFeeMultiplier must be updated.

Echidna Passed

Only the owner can update protocolFeeCollector . Echidna Passed

After the owner calls setProtocolFeeCollectorAddress ,
protocolFeeCollector must be updated.

Echidna Passed

exchange/contracts/src/MixinSignatureValidator.sol

Property Approach Result

preSign is idempotent. Unit Test Not covered

isValidHashSignature will return false or revert when using
random inputs.

Echidna Passed

isValidOrderSignature will return false or revert when using
random inputs.

Echidna Passed

isValidTransactionSignature will return false or revert when
using random inputs.

Echidna Passed

exchange/contracts/src/MixinExchangeCore.sol

Property Approach Result

Orders can only run using data that was signed. Manual
Code
Review

TOB-0x-009

If an order can be filled, then it can be canceled. Echidna Passed

If an order cannot be filled, then it cannot be canceled. Echidna Code
Quality

A valid order cannot be fully filled twice. Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 10

https://docs.google.com/document/d/1YNxPhq5wBSkq6Kf7V1R4Y_CNs_LHIXhVjbfger4mqoo/edit#heading=h.595bld8l68dh
https://docs.google.com/document/d/1YNxPhq5wBSkq6Kf7V1R4Y_CNs_LHIXhVjbfger4mqoo/edit#heading=h.ji9r3xxdamf
https://docs.google.com/document/d/1YNxPhq5wBSkq6Kf7V1R4Y_CNs_LHIXhVjbfger4mqoo/edit#heading=h.ji9r3xxdamf

A filled order can be canceled immediately twice. Echidna Passed

A valid order can be partially filled with zero twice. Echidna Passed

If an order can be partially filled, then it should transfer the
corresponding maker/taker/fees amounts.

Manual
Code
Review

TOB-0x-015

If an order can be partially filled with zero, then it can be
partially filled with one token.

Echidna TOB-0x-017

utils/contracts/src/MixinMatchOrders.sol

Property Approach Result

matchOrders should not revert if and only if
● leftOrder and rightOrder orders are valid and fillable.
● leftOrder.makerAssetData ==

rightOrder.takerAssetData

● leftOrder.takerAssetData ==

rightOrder.makerAssetData

● (leftOrder.makerAssetAmount *

rightOrder.makerAssetAmount) >=

(leftOrder.takerAssetAmount *

rightOrder.takerAssetAmount)

Echidna Passed

Exchange Libraries
Exchange libraries contain the implementations of various libraries and utilities used within
the Exchange contract. They include two important libraries that define the data structures
for orders and transactions, with a small set of basic operations.

exchange-libs/contracts/src/LibOrder.sol

Property Approach Result

getTypedDataHash should never revert. Echidna Passed

getStructHash should never revert. Echidna Passed

If x1 and x2 are Orders then getStructHash(x1) ==
getStructHash(x1) ⇔ x1 == x2 .

Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 11

https://docs.google.com/document/d/1YNxPhq5wBSkq6Kf7V1R4Y_CNs_LHIXhVjbfger4mqoo/edit#heading=h.vobjg4mq00ja
https://docs.google.com/document/d/1YNxPhq5wBSkq6Kf7V1R4Y_CNs_LHIXhVjbfger4mqoo/edit#heading=h.tgf6e5j4k5cz

If x1 and x2 are Orders then getTypedDataHash(x1,b1) ==
getTypedDataHash(x2,b2) ⇔ x1 == x2.

Echidna Passed

exchange-libs/contracts/src/LibZeroExTransaction.sol

Property Approach Result

getTypedDataHash should never revert. Echidna Passed

getStructHash should never revert. Echidna Passed

If x and y are ZeroExTransaction then getStructHash(x) ==
getStructHash(y) ⇔ x == y.

Echidna Passed

If x and y are ZeroExTransaction then getTypedDataHash(x)
== getTypedDataHash(y) ⇔ x == y

Echidna Passed

exchange-libs/contracts/src/LibMath.sol

Property Approach Result

safeGetPartialAmountFloor never returns 0 when the
parameters are non-zero and the numerator is less or equal
than denominator.

Manticore Verified

Utils Contracts
Utils contains smart contract utilities and libraries used throughout the entire codebase
of the 0x smart contracts. We identified security properties for each contract or library
regardless of how they are used in the codebase.

utils/contracts/src/LibSafeMath.sol

Property Approach Result

The correct sum is calculated when adding. Echidna Passed

Integer overflows are detected for addition. Echidna Passed

The correct difference is calculated for subtraction. Echidna Passed

Integer overflows are detected when subtracting. Echidna Passed

The correct product is calculated when multiplying. Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 12

Integer overflows are detected for multiplication. Echidna Passed

The correct quotient is calculated when dividing. Echidna Passed

Division by zero is detected. Echidna Passed

The result of safeDiv is less than or equal to its first argument. Echidna Passed

max256 returns the greater argument. Echidna Passed

min256 returns the lesser argument. Echidna Passed

LibSafeMath and SafeMath produce the same results. Echidna Passed

utils/contracts/src/SafeMath.sol

Property Approach Result

The correct sum is calculated when adding. Echidna Passed

Integer overflows are detected for addition. Echidna Passed

The correct difference is calculated for subtraction. Echidna Passed

Integer overflows are detected when subtracting. Echidna Passed

The correct product is calculated when multiplying. Echidna Passed

Integer overflows are detected for multiplication. Echidna Passed

The correct quotient is calculated when dividing. Echidna Passed

Division by zero is detected. Echidna Passed

The result of safeDiv is less than or equal to its first argument. Echidna Passed

max256 returns the greater argument. Echidna Passed

min256 returns the lesser argument. Echidna Passed

utils/contracts/src/LibFractions.sol

Property Approach Result

Addition of fractions is commutative. Echidna Passed

Adding zero to a fraction produces the same result. Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 13

utils/contracts/src/LibAddressArray.sol

Property Approach Result

append increases the length of the array by 1. Echidna Passed

The array returned by append contains the appended address in
the last index.

Echidna Passed

The index returned by indexOf corresponds to the appended
address.

Echidna Passed

The boolean value returned by indexOf is always true when you
call it with the array returned by append and the appended
address.

Echidna Passed

The boolean value returned by contains is always true when you
call it with the array returned by append and the appended
address.

Echidna Passed

utils/contracts/src/LibBytes.sol

Property Approach Result

No sequence of operations over a list of bytes will corrupt its
state.

Echidna Passed

equals(bs,bs) returns true for all lists of bytes. Echidna Passed

equals never reverts. Echidna Passed

Calling writeLength with a larger length than the input list of
bytes should increase the length of it.

Echidna Passed

Calling writeLength with a smaller length than the input list of
bytes should decrease the length of it.

Echidna Passed

Decrementing and re-incrementing the length with writeLength
should not change the original content of the list of bytes.

Echidna Passed

Calling bs. slice(0,bs.length) returns a new list of bytes with
the same content as bs, for all possible lists of bytes.

Echidna Passed

Calling bs.slice(0,0) returns a new empty list of bytes for all
possible lists of bytes.

Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 14

Calling bs.slice(index+1,index) reverts for all possible lists of
bytes.

Echidna Passed

Calling bs.slice never changes the content of bs for all possible
lists of bytes.

Echidna Passed

Calling bs. sliceDestructive(0,bs.length) returns a list of
bytes with the same content as bs, for all possible lists of bytes.

Echidna Passed

Calling bs.sliceDestructive(0,0) returns an empty list of
bytes for all possible lists of bytes.

Echidna Passed

Calling bs.sliceDestructive(index+1,index) reverts for all
possible lists of bytes.

Echidna Passed

If the length of a list of bytes is greater or equal than 0,
PopLastByte should return the last byte, reduce the length in 1,
and preserve the content of the rest of the list. Otherwise, it
should revert.

Echidna Passed

If the length of a list of bytes is greater or equal than 20,
PopLast20Bytes should return a list of the last 20 bytes, reduce
the length in 20, and preserve the content of the rest of the list.
Otherwise, it should revert.

Echidna Passed

readAddress reads an address from a position in a list of bytes.
It reverts if the list of bytes’ length is less than 20 or if the
position is greater than length - 20.

Echidna Passed

readAddress always returns a valid address or reverts. Echidna Passed

writeAddress writes an address into a specific position in a list
of bytes. It reverts if the list of bytes’ length is less than 20.

Echidna Passed

writeAddress always stores a valid address or reverts. Echidna Passed

ReadUint256 reads an uint256 from a position in a list of bytes.
It reverts if the list of bytes’ length is less than 32 or if the
position is greater than length - 32.

Echidna Passed

writeUInt256 writes an uint256 into a specific position in a list
of bytes. It reverts if the list of bytes’ length is less than 32.

Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 15

ReadBytes32 reads a bytes32 from a position in a list of bytes. It
reverts if the list of bytes’ length is less than 32 or if the position
is greater than length - 32.

Echidna Passed

writeBytes32 writes a bytes32 into a specific position in a list of
bytes. It reverts if the list of bytes’ length is less than 32.

Echidna Passed

ReadBytes4 reads a bytes4 from a position in a list of bytes. It
reverts if the list of bytes’ length is less than 4 or if the position is
greater than length - 4.

Echidna Passed

readAddress does not change the input list of bytes. Echidna Passed

readUint256 does not change the input list of bytes. Echidna Passed

readBytes32 does not change the input list of bytes. Echidna Passed

readBytes4 does not change the input list of bytes. Echidna Passed

writeAddress does not change the length or the content of the
rest of the input list of bytes.

Echidna Passed

writeUint256 does not change the length or the content of the
rest of the input list of bytes.

Echidna Passed

writeBytes32 does not change the length or the content of the
rest of the input list of bytes.

Echidna Passed

writeBytes4 does not change the length or the content of the
rest of the input list of bytes.

Echidna Passed

utils/contracts/src/Refundable.sol

Property Approach Result

Refunds are disabled during function calls with the
disableRefundUntilEnd modifier.

Echidna Passed

Refunds retain their enabled or disabled status after calls to
functions with the disableRefundUntilEnd modifier.

Echidna Passed

utils/contracts/src/Ownable.sol

Property Approach Result

Only the owner can transfer the ownership. Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 16

If the owner calls transferOwnership , the owner must change. Echidna Passed

The owner cannot be transferred to the 0x0 address. Echidna Passed

Staking Contracts
The staking package implements the stake-based liquidity incentives. It is subdivided into
several directories that implement a mix of features to perform various arithmetic
operations, including vault management, fee computation, and several utils libraries.

staking/contracts/src/libs/LibCobbDouglas.sol

Property Approach Result

The cobbdouglas function does not revert when valid input
parameters are used.

Echidna TOB-0x-016

The cobbdouglas function returns expected values when valid
input parameters are used.

Custom
Script

Passed

MultiSig Wallet Contracts
The MultiSig wallet contracts are used to control various contracts within the 0x protocol.
There is one base contract, the MultiSigWallet , that is expanded upon for various uses.
Most notably, the AssetProxyOwner extends the MultiSigWalletWithTimeLock , which
extends the MultiSigWallet . Because of this, many of the properties are shared.

multisig/contracts/src/MultiSigWallet.sol

Property Approach Result

The required number of confirmations is always less or equal
than the length of the list of owners.

Echidna Passed

The required number of confirmations is always a positive
number.

Echidna Passed

The length of the list of owners is always a positive number. Echidna Passed

Changing the required number of confirmations to an invalid
value reverts.

Echidna Passed

An owner cannot remove another owner without consensus
from the required number of owners.

Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 17

https://docs.google.com/document/d/1YNxPhq5wBSkq6Kf7V1R4Y_CNs_LHIXhVjbfger4mqoo/edit#heading=h.2qrgbnqaanth

An executed transaction cannot be executed again. Unit Test Passed

An unexecuted transaction can be executed. Unit Test Passed

Only the wallet contract can add an owner. Echidna Passed

Only the wallet contract can replace an owner. Echidna Passed

Adding the 0x0 address as owner will revert. Echidna Passed

Replacing any owner by the 0x0 address will revert. Echidna Passed

Only the wallet contract can remove an owner. Echidna Passed

Only the wallet contract can change the required number of
confirmations.

Echidna Passed

An owner can confirm a transaction. Echidna Passed

Non-owners cannot confirm transactions. Echidna Passed

An owner can revoke their confirmation of a transaction. Echidna Passed

Non-owners cannot revoke transactions. Echidna Passed

multisig/contracts/src/MultiSigWalletWithTimeLock.sol

Property Approach Result

All the properties from MultiSig Wallet should hold. Echidna Passed

Only the wallet can change the time lock. Echidna Passed

A transaction can be confirmed before the time lock. Echidna Passed

© 2019 Trail of Bits 0x Protocol Security Assessment | 18

Project Dashboard
Application Summary

Name 0x Protocol

Type Protocol

Platform Solidity

Engagement Summary

Dates September 9 th to October 4 th , 2019

Method Whitebox

Consultants Engaged 4

Level of Effort 8 person-weeks

Vulnerability Summary

Total High Severity Issues 3 ◼◼◼

Total Medium Severity Issues 7 ◼◼◼◼◼◼◼◼

Total Low Severity Issues 2 ◼◼

Total Informational Severity Issues 11 ◼◼◼◼◼◼◼◼◼◼◼◼

Total 23

Category Breakdown

Access Controls 4 ◼◼◼◼

Data Validation 11 ◼◼◼◼◼◼◼◼◼◼◼

Denial of Service 1 ◼

Documentation 1 ◼

Auditing and Logging 1 ◼

Numerics 1 ◼

Timing 2 ◼◼

Undefined Behavior 2 ◼◼

Total 23

© 2019 Trail of Bits 0x Protocol Security Assessment | 19

Recommendations Summary
Short Term
❑ Evaluate the impact of protocol fees on nested operations and filter contracts
(TOB-0x-001).

❑ Properly document the potential reduced cost of front-running for market makers
to make sure users are aware of this risk (TOB-0x-002). Establish a reasonable cap for
the protocolFeeMultiplier to mitigate this issue.

❑ Properly document the permanent effects of cancelorderUpTo on future orders to
warn users of this behavior (TOB-0x-003). Alternatively, disallow the cancellation of future
orders. This will prevent users from locking themselves out of participating with the
protocol.

❑ Document the inherent risks of using validators (TOB-0x-004) to ensure users are
aware of them in case of a validator compromise.

❑ Document the WETH9 contract’s non-standard behavior (TOB-0x-005) and verify that
all code interfacing with it will not break due to this behavior.

❑ Implement NoThrow variants for batch processing of transaction execution and
order matching (TOB-0x-006). This will mitigate the possibility of exchange griefing by a
malicious order included in a batch of transactions.

❑ Enforce a reasonable minimum value for the protocol fee for each order or
transaction (TOB-0x-007). This will prevent orders from bypassing the protocol fee when a
transaction has a zero gas price (e.g., in the case of a miner taking orders).

❑ Add events where appropriate for critical operations identified in TOB-0x-008 . This
will make off-chain monitoring and auditing much simpler.

❑ Properly validate the content and size of the makerAssetData and takerAssetData
fields in orders (TOB-0x-009 , TOB-0x-010). This will prevent reaching potential edge cases
and triggering undefined behavior.

❑ Ensure all uses of call check the existence of a contract at the destination address
(TOB-0x-011). This will ensure that the return value of call correctly expresses whether the
call ran to completion or not.

© 2019 Trail of Bits 0x Protocol Security Assessment | 20

❑ Ensure all wallets deriving from MultiSigWallet do not redefine transactionId to
be shorter than a uint256 (TOB-0x-012). This will prevent the introduction of a potential
overflow scenario.

❑ Implement the necessary range checks to enforce the timelock described in the
specification (TOB-0x-013). Otherwise correct the specification to match the intended
behavior.

❑ Use SafeMath when performing calculations in the wallet contracts (TOB-0x-014).
This will prevent unexpected overflows from occurring.

❑ Select a proper bound for the accumulated rounding error when calculating fill
results (TOB-0x-015). Add code to keep track of it for each order and disallow a partial fill if
it increases beyond the bound. This will limit the magnitude of rounding errors introduced
to order fill calculations.

❑ Reduce the bound value for the Cobb-Douglas function’s parameters and properly
document the input constraints (TOB-0x-016). Proper documentation of function
constraints allows for more robust testing.

❑ Define a proper procedure to determine if an order is fillable and document it in
the protocol specification (TOB-0x-017). If necessary, warn the user about potential
constraints on the orders. This will improve the user experience in the event of valid but
unfillable orders.

❑ Ensure critical contract (e.g., StakingProxy.sol and ZrxVault.sol) owners are not
EOAs (TOB-0x-018), but are m-of-n M ultiSig wallets where m >= 2, so that a single
account cannot accidentally/maliciously trigger these extreme scenarios. This will help to
mitigate the single point of failure in some staking contracts.

❑ Correct the transfer and transferFrom in ERC20.sol to allow self-transfers
(TOB-0x-019) in each possible context if the balance is enough. This will ensure the ERC20
implementation adheres to the standard completely.

❑ Add a return statement to MixinStakingPool._assertStakingPoolExists or remove
the return type (TOB-0x-020). Properly adjust the documentation, if needed. This will
prevent potential confusion if another function checks the return value.

❑ Add proper validation checks on all parameters in MixinParams.setParams
(TOB-0x-021). If the validation procedure is unclear or too complex to implement on-chain,
document the potential issues that could produce invalid values.

© 2019 Trail of Bits 0x Protocol Security Assessment | 21

❑ Document the purpose of the non-operator maker role within a staking pool and
caution operators against allowing third-party makers to join . (TOB-0x-022 ,
TOB-0x-023) This will greatly reduce the likelihood of operators adding makers that they do
not control to the pool.

© 2019 Trail of Bits 0x Protocol Security Assessment | 22

Long Term
❑ Consider using an alternative fee that does not depend on the tx.gasprice
(TOB-0x-001 , TOB-0x-002 , TOB-0x-007). This will allow the protocol to better mitigate
front-running attacks and avoid giving miners or large market makers an economic
advantage within the system.

❑ Avoid designing user operations that have drastic effects on the post-conditions
(TOB-0x-003) (e.g., they cannot be reversed) without strong pre-conditions to prevent
dangerous behavior. This will prevent users from accidentally performing operations they
potentially do not want or expect.

❑ Consider using a blockchain monitoring system to track
SignatureValidatorApproval events to catch front-running attacks (TOB-0x-004) and
otherwise suspicious behavior in the 0x contracts (TOB-0x-008).

❑ Use Echidna to review the ERC20 specification and verify your contracts meet the
standard (TOB-0x-005 , TOB-0x-019). When interfacing with external ERC20 tokens, be wary
of popular tokens that do not properly implement the standard (e.g., many tokens do not
include return values for approve , transfer , transferFrom , etc.).

❑ Take into consideration the effect of malicious inputs when implementing
functions that perform a batch of operations (TOB-0x-006). This will allow the 0x team
to design mitigations into the protocol.

❑ Avoid handling arbitrary encoded data without any proper checks (TOB-0x-009).
This will prevent malicious actors from triggering undefined behavior.

❑ Review the usage of inline assembly to avoid reading uninitialized data
(TOB-0x-009). This will prevent malicious actors from triggering undefined behavior.

❑ Review every field that is logged and make sure it is properly validated
(TOB-0x-010). This will prevent logging of malformed input and keep the logs cleaner.

❑ Ensure the lack of contract existence check in MultiSigWallet is well documented
and accounted for in any systems depending on this contract (TOB-0x-011). This will
help to prevent confusion around the success of low-level calls to external contracts.

❑ Use SafeMath to avoid potential overflows (TOB-0x-012). Overflows may trigger
undefined behavior or move the system into an inconsistent state.

❑ Make sure implementation and specification are in sync (TOB-0x-013).

© 2019 Trail of Bits 0x Protocol Security Assessment | 23

https://github.com/crytic/echidna
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca

❑ Ensure proper testing is applied to the wallet contracts (TOB-0x-014). Vulnerabilities
in these contracts could have far-reaching effects, especially on controlling aspects of the
0x exchange and staking systems.

❑ Use Echidna or Manticore to:
❏ Test for integer overflows (TOB-0x-012),
❏ Verify that code properly implements the specification (TOB-0x-013),
❏ Test for properties that could fail after a sequence of transactions (TOB-0x-015),
❏ Make sure the arithmetic computations return expected results and do not revert

(TOB-0x-016),
❏ Test that fillOrder never reverts when the order is valid and is used to completely

fill an order (TOB-0x-017), and
❏ Locate missing parameter validation checks (TOB-0x-021).

❑ Use Slither to detect when functions are missing appropriate return statements
(TOB-0x-020). This will help to prevent logical errors when a caller expects a return value
but only receives the default value.

❑ Create a new modifier, onlyStakingPoolOperator , and use it to restrict calls to
decreaseStakingPoolOperatorShare and addMakerToStakingPool (TOB-0x-022 ,
TOB-0x-023). This will greatly reduce the attack surface of staking pools and safeguard
operators against third-party makers in the event they approve one and are not aware of
the role’s capabilities.

❑ Fix the _assertSenderIsPoolOperatorOrMaker function to correctly check that
msg.sender is the makerAddress passed to removeMakerFromStakingPool (TOB-0x-023),
not simply any maker from that pool. This will greatly reduce the attack surface of staking
pools and safeguard operators against third-party makers in the event they approve one
and are not aware of the role’s capabilities.

© 2019 Trail of Bits 0x Protocol Security Assessment | 24

https://github.com/crytic/slither

Findings Summary
Title Type Severity

1 Fee refunds incentivize transaction
centralization through market makers

Undefined
Behavior

Low

2 Market makers have a reduced cost for
performing front-running attacks

Timing Medium

3 cancelOrdersUpTo can be used to
permanently block future orders

Data Validation High

4 setSignatureValidatorApproval race
condition may be exploitable

Timing Medium

5. WETH9 transferFrom often does not
follow spec

Access Controls Informational

6. Batch processing of transaction execution
and order matching may lead to
exchange griefing

Denial of
Service

Medium

7 Zero fee orders are possible if a user
performs transactions with a zero gas
price

Data Validation Medium

8 Lack of events for critical operations Auditing and
Logging

Informational

9 Lack of validation in the makerAssetData
and takerAssetData leads to unexpected
behavior

Undefined
Behavior

Informational

10 Transfers with zero fee amounts can log
arbitrary data in their feeAssetData

Data Validation Informational

11 MultiSigWallet does not check contract
existence before call

Data Validation Medium

12 Potential overflow in transactionId
allowing arbitrary execution of
transactions by a malicious owner

Data Validation Informational

© 2019 Trail of Bits 0x Protocol Security Assessment | 25

13 Specification-Code mismatch for
AssetProxyOwner timelock period

Documentation High

14 Potential overflow in
MultiSigWalletWithTimelock when
calculating whether the timelock has
passed

Data Validation Low

15 Rounding division errors can accumulate
over partial fills

Numerics Informational

16 The Cobb–Douglas function is not
properly documented and reverts with
valid parameters

Data Validation Medium

17 Unclear documentation on how order
filling can fail

Data Validation High

18 Potential single point of failure for
"read-only-mode" and
"catastrophic-failure-mode"

Access Controls Informational

19 ERC20 reverts during certain self-transfer Data Validation Informational

20 _assertStakingPoolExists never returns
true

Data Validation Informational

21 Calls to setParams may set invalid values
and produce unexpected behavior in the
staking contracts

Data Validation Medium

22 Malicious non-operator maker can
decrease staking pool operator share

Access Controls Informational

23 Non-operator makers can add or remove
other makers

Access Controls Informational

© 2019 Trail of Bits 0x Protocol Security Assessment | 26

1. Fee refunds incentivize transaction centralization through market makers
Severity: Low Difficulty: Medium
Type: Undefined Behavior Finding ID: TOB-0x-001
Target: 0x Protocol fee structure

Description
According to the 3.0 specification, ETH or WETH may be used to pay a protocol fee. This
protocol fee is required when executing fillOrder - and matchOrder -style functions. Given
the introduction of fees when performing these operations, the context in which a
transaction executes will impact the payment of a protocol fee.

The protocol fee can be paid in either ETH or its WETH equivalent (denominated in wei). If
it is not provided as value included in the message call, the Staking contract will attempt
to transfer WETH from the taker's address to cover the fee instead. The Exchange
contract assumes that the fee was correctly paid if the Staking contract's payProtocolFee
function did not revert.

Figure 1.1: The protocol fee payment process within the 3.0 spec.

When invoking executeTransaction (Figure 1.2), an encoded transaction is provided as
msg.data . Part of this encoded transaction includes a signature, and the owner of this
signature is the context in which the encoded transaction will execute. This functionality
makes the use of "filter contracts" easier, since the filter contracts and relays may execute a
transaction on behalf of the user.

 /// @dev Executes an Exchange method call in the context of signer.
 /// @param transaction 0x transaction structure.
 /// @param signature Proof that transaction has been signed by signer.
 /// @return ABI encoded return data of the underlying Exchange function call.
 function _executeTransaction (
 LibZeroExTransaction.ZeroExTransaction memory transaction,
 bytes memory signature
)
 internal
 returns (bytes memory)
 {
 bytes32 transactionHash = transaction. getTypedDataHash (EIP712_EXCHANGE_DOMAIN_HASH);

 _assertExecutableTransaction (
 transaction,
 signature,
 transactionHash
);

 // Set the current transaction signer
 address signerAddress = transaction.signerAddress;
 _setCurrentContextAddressIfRequired (signerAddress, signerAddress);

 // Execute transaction
 transactionsExecuted[transactionHash] = true ;
 (bool didSucceed , bytes memory returnData) =

© 2019 Trail of Bits 0x Protocol Security Assessment | 27

address (this). delegatecall (transaction.data);
 if (! didSucceed) {
 LibRichErrors. rrevert (LibExchangeRichErrors. TransactionExecutionError (
 transactionHash,
 returnData
));
 }

 // Reset current transaction signer if it was previously updated
 _setCurrentContextAddressIfRequired (signerAddress, address (0));

 emit TransactionExecution (transactionHash);

 return returnData;
 }

Figure 1.2: The definition of _executeTransaction , the only function called by
executeTransaction .

If we use ETH as an example, the executeTransaction function will pass execution to the
function specified within the encoded msg.data through the use of delegateCall . This also
passes msg.value to the specified function context. Because of this, the caller of
executeTransaction must provide ETH during invocation. This fundamentally changes the
context in which fees are paid, because now the maker and taker are no longer covering
protocol fees; the executeTransaction caller is.

This functionality is, by itself, not worrisome. However, when compounded with the way
market makers receive their protocol fees, this could encourage the practice of "transaction
smuggling" (for lack of a better term). By providing a transaction for a market maker to
execute through executeTransaction , this functionality allows market makers to receive a
portion of the protocol fee, then offer it back to the provider of the transaction once fee
pools have been disbursed. This effectively allows market makers to reduce the protocol
interaction cost for users.

Overall, this could lead to protocol fee monopolization, since the prospect of paying a lower
overall protocol fee incentivizes users to let market makers execute the users’ transactions.

Exploit Scenario
Alice prepares an order to submit to the 0x exchange. Instead of submitting it herself and
paying the full protocol fee, she encodes her transaction as a 0x transaction and gives it to
Eve's contract (which records Alice's address and the amount of ETH sent) to execute. This
approach allows Eve to front the executeTransaction cost, including protocol fees. At the
end of the disbursement epoch, Eve refunds Alice a portion of the protocol fee received.

Recommendation
Short term, evaluate the impact of protocol fees on nested operations and filter contracts.

Long term, consider including protocol fees within an order's definition, not within
Ethereum transaction semantics.

© 2019 Trail of Bits 0x Protocol Security Assessment | 28

2. Market makers have a reduced cost for performing front-running attacks
Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-0x-002
Target: 0x Protocol 3.0 specification

Description
The 0x Protocol 3.0 specification defines how protocol fees are calculated.

The protocol fee can be calculated with tx.gasprice * protocolFeeMultiplier, where the
protocolFeeMultiplier is an upgradable value meant to target a percentage of the gas
used for filling a single order. The suggested initial value for the protocolFeeMultiplier is
150000, which is roughly equal to the average gas cost of filling a single order (thereby
doubling the net average cost).

Figure 2.1: The protocol fee definition as defined in the 3.0 specification.

Market makers receive a portion of the protocol fee for each order filled, and the protocol
fee is based on the transaction gas price. Therefore market makers are able to specify a
higher gas price for a reduced overall transaction rate, using the refund they will receive
upon disbursement of protocol fee pools.

Exploit Scenario
Eve is a market-maker maintaining a distribution pool. Alice submits a profitable
transaction to Eve’s market. Eve sees the unconfirmed transaction and realizes it will result
in a lower overall asset price, and submits a transaction with a higher gas cost and protocol
fee, front-running Alice’s transaction to sell her asset before the price decreases and
increasing her profit from the transaction. Because Eve is a market maker, she receives a
portion of the protocol fee she paid to front run Alice’s transaction, reducing the overall
cost.

Recommendation
Short term, properly document this issue to make sure users are aware of this risk.
Establish a reasonable cap for the protocolFeeMultiplier to mitigate this issue.

Long term, consider using an alternative fee that does not depend on the tx.gasprice to
avoid reducing the cost of performing front-running attacks.

© 2019 Trail of Bits 0x Protocol Security Assessment | 29

3. cancelOrdersUpTo can be used to permanently block future orders
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-0x-003
Target: exchange/contracts/src/MixinExchangeCore.sol

Description
Users can cancel an arbitrary number of future orders, and this operation is not reversible.

The cancelOrdersUpTo function (Figure 3.1) can cancel an arbitrary number of orders in a
single, fixed-size transaction. This function uses a parameter to discard any order with salt
less than the input value. However, cancelOrdersUpTo can cancel future orders if it is
called with a very large value (e.g., MAX_UINT256 - 1). This operation will cancel future
orders, except for the one with salt equal to MAX_UINT256 .

 function cancelOrdersUpTo (uint256 targetOrderEpoch)

 external

 payable

 nonReentrant

 refundFinalBalance

 {

 address makerAddress = _getCurrentContextAddress ();

 // If this function is called via ̀executeTransaction`, we only update the orderEpoch

for the makerAddress/msg.sender combination.

 // This allows external filter contracts to add rules to how orders are cancelled via

this function.

 address orderSenderAddress = makerAddress == msg . sender ? address (0) : msg . sender ;

 // orderEpoch is initialized to 0, so to cancelUpTo we need salt + 1

 uint256 newOrderEpoch = targetOrderEpoch + 1 ;

 uint256 oldOrderEpoch = orderEpoch[makerAddress][orderSenderAddress];

 // Ensure orderEpoch is monotonically increasing

 if (newOrderEpoch <= oldOrderEpoch) {

 LibRichErrors. rrevert (LibExchangeRichErrors. OrderEpochError (

 makerAddress,

 orderSenderAddress,

 oldOrderEpoch

));

 }

© 2019 Trail of Bits 0x Protocol Security Assessment | 30

 // Update orderEpoch

 orderEpoch[makerAddress][orderSenderAddress] = newOrderEpoch;

 emit CancelUpTo (

 makerAddress,

 orderSenderAddress,

 newOrderEpoch

);

 }

Figure 3.1: The cancelOrdersUpTo function.

Exploit Scenario
Alice implements an automatic approach to fill and cancel orders. However, a mistake in
the code causes a call to cancelOrdersUpTo with a very large value. As a result, all of Alice’s
orders are canceled, and there is no way to reverse this operation. Alice is forced to use
another address for her orders.

Recommendation
Short term, properly document this behavior to warn users about the permanent effects of
cancelOrderUpTo on future orders. Alternatively, disallow the cancelation of future orders.

Long term, avoid designing user operations that have drastic effects on the post-conditions
(e.g., they cannot be reversed) without strong pre-conditions to prevent dangerous
behavior. This will prevent users from accidentally performing operations they potentially
do not want or expect.

© 2019 Trail of Bits 0x Protocol Security Assessment | 31

4. setSignatureValidatorApproval race condition may be exploitable
Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-0x-004
Target: exchange/contracts/src/MixinSignatureValidator.sol

Description
If a validator is compromised, a race condition in the signature validator approval logic
becomes exploitable.

The setSignatureValidatorApproval function (Figure 4.1) allows users to delegate the
signature validation to a contract. However, if the validator is compromised, a race
condition in this function could allow an attacker to validate any amount of malicious
transactions.

 function setSignatureValidatorApproval (

 address validatorAddress ,

 bool approval

)

 external

 payable

 nonReentrant

 refundFinalBalance

 {

 address signerAddress = _getCurrentContextAddress ();

 allowedValidators[signerAddress][validatorAddress] = approval;

 emit SignatureValidatorApproval (

 signerAddress,

 validatorAddress,

 approval

);

 }

Figure 4.1: The setSignatureValidatorApproval function.

Exploit Scenario

1. Alice calls setSignatureValidatorApproval(BobContract, True) . This allows
Bob's contract to validate Alice's signatures.

2. An attacker compromises Bob's contract, so Alice removes the approval calling
setSignatureValidatorApproval(Bob, False).

3. The attacker sees Alice’s unconfirmed approval removal and validates a number of
malicious transactions or orders before Alice’s transaction is mined.

4. If the attacker's transactions are mined before Alice’s, the malicious transactions or
orders can be executed.

© 2019 Trail of Bits 0x Protocol Security Assessment | 32

Recommendation
Short term, document this behavior to make sure users are aware of the inherent risks of
using validators in case of a compromise.

Long term, consider monitoring the blockchain using the SignatureValidatorApproval
events to catch front-running attacks.

© 2019 Trail of Bits 0x Protocol Security Assessment | 33

5. WETH9 transferFrom o�ten does not follow spec
Severity: Informational Difficulty: Low
Type: Access Controls Finding ID: TOB-0x-005
Target: erc20/contracts/src/WETH9.sol

Description
If the message sender is the source of a transferFrom call, the sender’s allowance will not
be considered, and the transfer will initiate immediately. This breaks invariants expected of
transferFrom .

Traditionally, the transferFrom method moves tokens from one account to another,
provided the source account has approved the sender to send such an amount using the
ERC20 method approve . However, the transferFrom function in WETH9’s ERC20 token
does not require approval if the sender is the source of the account:

 function transferFrom (address src , address dst , uint wad)

 public

 returns (bool)

 {

 require (balanceOf[src] >= wad);

 if (src != msg . sender && allowance[src][msg . sender] != uint (- 1)) {

 require (allowance[src][msg . sender] >= wad);

 allowance[src][msg . sender] -= wad;

 }

 balanceOf[src] -= wad;

 balanceOf[dst] += wad;

 Transfer (src, dst, wad);

 return true ;

 }

}

Figure 5.1: The transferFrom function.

Although it may seem intuitive to allow the owner of the account balance to transfer funds
without approval, external tooling may rely on invariants which are now broken.

© 2019 Trail of Bits 0x Protocol Security Assessment | 34

Exploit Scenario
Alice sends a transaction that invokes transferFrom with her own address as the source
address, assuming it will fail if no approval was set beforehand. Instead, the transfer
succeeds, and Alice’s funds are lost.

Recommendation
Short term, document this contract’s non-standard behavior and verify that all code
interfacing with it does not break due to this behavior.

Long term, use Echidna to review the ERC20 specification and verify your contracts meet
the standard. When interfacing with external ERC20 tokens, be wary of popular tokens that
do not properly implement the standard (e.g., many tokens do not include return values for
approve , transfer , transferFrom , etc.).

© 2019 Trail of Bits 0x Protocol Security Assessment | 35

https://github.com/crytic/echidna
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca

6. Batch processing of transaction execution and order matching may lead
to exchange griefing
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-0x-006
Target: exchange/contracts/src/{MixinTransactions, MixinMatchOrders}.sol

Description
Batch processing of transaction execution and order matching will iteratively process every
transaction and order, which all involve filling. If the asset being filled does not have
enough allowance, the asset’s transferFrom will fail, causing AssetProxyDispatcher to
revert.

 function _dispatchTransferFrom(

 bytes32 orderHash,

 bytes memory assetData,

 address from,

 address to,

 uint256 amount

)

 internal

 {

 ...

 // Call the asset proxy's transferFrom function with the constructed calldata.

 (bool didSucceed, bytes memory returnData) = assetProxy.call(proxyCalldata);

 // If the transaction did not succeed, revert with the returned data.

 if (!didSucceed) {

 LibRichErrors.rrevert(LibExchangeRichErrors.AssetProxyTransferError(

 orderHash,

 assetData,

 returnData

));

 }

 ...

 }

Figure 6.1: The _dispatchTransferFrom function.

NoThrow variants of batch processing, which are available for filling orders, are not available
for transaction execution and order matching. So if one transaction or order fails this way,

© 2019 Trail of Bits 0x Protocol Security Assessment | 36

the entire batch will revert and will have to be re-submitted after the reverting transaction
is removed.

Exploit Scenario
An attacker submits a valid order to match which gets bundled into a batch after any
validation by relayers, but then front-runs its processing by reducing the allowance below
the required value. This causes the malicious order to fail and revert the entire batch of
matching orders, resulting in exchange griefing that leads to delays and loss of fees to
makers.

Recommendation
Short term, implement NoThrow variants for batch processing of transaction execution and
order matching.

Long term, take into consideration the effect of malicious inputs when implementing
functions that perform a batch of operations.

© 2019 Trail of Bits 0x Protocol Security Assessment | 37

7. Zero fee orders are possible if a user performs transactions with a zero gas
price
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-0x-007
Target: exchange-libs/contracts/src/LibFillResults.sol

Description
Users can submit valid orders and avoid paying fees if they use a zero gas price.

The computation of fees for each transaction is performed in the calculateFillResults
function. It uses the gas price selected by the user and the protocolFeeMultiplier
coefficient:

 function calculateFillResults (

 LibOrder.Order memory order,

 uint256 takerAssetFilledAmount ,

 uint256 protocolFeeMultiplier ,

 uint256 gasPrice

)

 internal

 pure

 returns (FillResults memory fillResults)

 {

 // Compute proportional transfer amounts

 fillResults.takerAssetFilledAmount = takerAssetFilledAmount;

 fillResults.makerAssetFilledAmount = LibMath. safeGetPartialAmountFloor (

 takerAssetFilledAmount,

 order.takerAssetAmount,

 order.makerAssetAmount

);

 fillResults.makerFeePaid = LibMath. safeGetPartialAmountFloor (

 takerAssetFilledAmount,

 order.takerAssetAmount,

 order.makerFee

);

 fillResults.takerFeePaid = LibMath. safeGetPartialAmountFloor (

 takerAssetFilledAmount,

 order.takerAssetAmount,

 order.takerFee

);

© 2019 Trail of Bits 0x Protocol Security Assessment | 38

 // Compute the protocol fee that should be paid for a single fill.

 fillResults.protocolFeePaid = gasPrice. safeMul (protocolFeeMultiplier);

 return fillResults;

 }

Figure 7.1: The calculateFillResults function.

Since the user completely controls the gas price of their transaction and the price could
even be zero , the user could feasibly avoid paying fees.

Exploit Scenario
The Exchange governance decides to significantly increase protocolFeeMultiplier to
force the collection of higher fees. Alice does not want to pay increased fees, so she
decides to submit her transactions with a gas price equal to zero and process her own
transactions as a miner. As a result, she is able to bypass protocol fee collection.

Recommendation
Short term, select a reasonable minimum value for the protocol fee for each order or
transaction.

Long term, consider not depending on the gas price for the computation of protocol fees.
This will avoid giving miners an economic advantage in the system.

© 2019 Trail of Bits 0x Protocol Security Assessment | 39

https://medium.com/chainsecurity/zero-gas-price-transactions-what-they-do-who-creates-them-and-why-they-might-impact-scalability-aeb6487b8bb0
https://medium.com/chainsecurity/zero-gas-price-transactions-what-they-do-who-creates-them-and-why-they-might-impact-scalability-aeb6487b8bb0

8. Lack of events for critical operations
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-0x-008
Target: Exchange contracts

Description
Several critical operations do not trigger events, which will make it difficult to review the
correct behavior of the contracts once deployed.

Critical operations that would benefit from triggering events include:

● Order matching (e.g., matchOrders , batchMatchOrders)
● Signature validation (e.g., preSign , isValidOrderSignature ,

isValidTransactionSignature)
● Wrapper functions (e.g., fillOrKillOrder , marketSellOrdersNoThrow ,

marketBuyOrdersNoThrow)
● Owner operations (e.g., transferOwnership)

Users and blockchain monitoring systems will not be able to easily detect suspicious
behaviors without events.

Exploit Scenario
An attacker compromises the Exchange owner and transfers the ownership to a different
address. Since there are no events associated with this critical operation, nobody notices
this attack.

Recommendation
Short term, add events where appropriate for all critical operations.

Long term, consider using a blockchain monitoring system to track any suspicious behavior
in the contracts.

© 2019 Trail of Bits 0x Protocol Security Assessment | 40

9. Lack of validation in the makerAssetData and takerAssetData leads to
unexpected behavior
Severity: Informational Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-0x-009
Target: exchange/contracts/src/MixinAssetProxyDispatcher.sol,
asset-proxy/contracts/src/ERC20Proxy.sol

Description
The lack of validation in two order fields may cause unexpected results in certain corner
cases, which could confuse users or allow an attacker to bring the contract into an invalid
state.

Orders contain two important variable-length size fields called makerAssetData and
takerAssetData . In valid orders, these fields should contain the identifier of the asset
proxy and the encoded address of the token contract to call transferFrom . However, these
two fields have no proper validation until they are used in the call to the asset proxy.
_dispatchTransferFrom validates that the assetData parameter is longer than 3 bytes and
uses the first 4 bytes to look for the corresponding asset proxy.

 function _dispatchTransferFrom (

 bytes32 orderHash ,

 bytes memory assetData ,

 address from ,

 address to ,

 uint256 amount

)

 internal

 {

 // Do nothing if no amount should be transferred.

 if (amount > 0) {

 // Ensure assetData length is valid

 if (assetData. length <= 3) {

 LibRichErrors. rrevert (LibExchangeRichErrors. AssetProxyDispatchError (

LibExchangeRichErrors.AssetProxyDispatchErrorCodes.INVALID_ASSET_DATA_LENGTH,

 orderHash,

 assetData

));

 }

© 2019 Trail of Bits 0x Protocol Security Assessment | 41

https://github.com/0xProject/0x-protocol-specification/blob/3.0/v3/v3-specification.md#order-message-format

 // Lookup assetProxy.

 bytes4 assetProxyId = assetData. readBytes4 (0);

 address assetProxy = _assetProxies[assetProxyId];

 // Ensure that assetProxy exists

 if (assetProxy == address (0)) {

 LibRichErrors. rrevert (LibExchangeRichErrors. AssetProxyDispatchError (

 LibExchangeRichErrors.AssetProxyDispatchErrorCodes.UNKNOWN_ASSET_PROXY,

 orderHash,

 assetData

));

 }

 …

 }

 }

Figure 9.1: Header of the _dispatchTransferFrom function.

It is worth mentioning that the remainder of the data is not validated in any way in the
Exchange contract. Finally, the data for the asset proxy will be encoded and the call will be
executed:

 function _dispatchTransferFrom (

 bytes32 orderHash ,

 bytes memory assetData ,

 address from ,

 address to ,

 uint256 amount

)

 internal

 {

 …

 // Construct the calldata for the transferFrom call.

 bytes memory proxyCalldata = abi . encodeWithSelector (

 IAssetProxy (address (0)).transferFrom. selector ,

 assetData,

 from,

 to,

© 2019 Trail of Bits 0x Protocol Security Assessment | 42

 amount

);

 // Call the asset proxy's transferFrom function with the constructed calldata.

 (bool didSucceed , bytes memory returnData) = assetProxy. call (proxyCalldata);

 // If the transaction did not succeed, revert with the returned data.

 if (! didSucceed) {

 LibRichErrors. rrevert (LibExchangeRichErrors. AssetProxyTransferError (

 orderHash,

 assetData,

 returnData

));

 }

 }

 }

Figure 9.2: Tail of the _dispatchTransferFrom function.

It is expected that the asset proxy validates the data, but the inline assembly code reads
what is in memory in the position where the assetData is assumed to be:

/////// Read token address from calldata ///////

// * The token address is stored in ̀assetData`.

//

// * The "offset to assetData" is stored at offset 4 in the calldata (table 1).

// [assetDataOffsetFromParams = calldataload(4)]

//

// * Notes that the "offset to assetData" is relative to the "Params" area of calldata;

// add 4 bytes to account for the length of the "Header" area (table 1).

// [assetDataOffsetFromHeader = assetDataOffsetFromParams + 4]

//

// * The "token address" is offset 32+4=36 bytes into "assetData" (tables 1 & 2).

// [tokenOffset = assetDataOffsetFromHeader + 36 = calldataload(4) + 4 + 36]

let token : = calldataload (add (calldataload (4), 40))

Figure 9.3: Part of the ERC20Proxy contract.

Exploit Scenario

© 2019 Trail of Bits 0x Protocol Security Assessment | 43

An attacker or a user could submit a valid order where the makerAssetData and
takerAssetData fields are not properly encoded and are shorter than expected. The lack of
checks will cause the asset proxy to read uninitialized memory. This uninitialized data was
not signed, so should not be used by the asset proxy in any way. However, in certain cases,
the transaction will unexpectedly succeed when it should certainly fail (e.g., when the token
address ends with zeros, such as this high-profile ERC20 token). As a result of that, a Fill
event with incorrect data will be emitted and some component of the 0x Exchange could
transition into an invalid state.

Recommendation
Short term, properly validate the content and size of the makerAssetData and
takerAssetData fields.

Long term:

● Avoid handling arbitrary encoded data without any proper checks.
● Review the usage of inline assembly to avoid reading uninitialized data.

© 2019 Trail of Bits 0x Protocol Security Assessment | 44

https://etherscan.io/token/0xdd974d5c2e2928dea5f71b9825b8b646686bd200

10. Transfers with zero fee amounts can log arbitrary data in their
feeAssetData
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-0x-010
Target: exchange/contracts/src/{MixinExchangeCore,
MixinAssetProxyDispatcher}.sol

Description
When an order is filled, there is no validation performed on the makerFeeAssetData or
takerFeeAssetData if the makerFee or takerFee , respectively, is equal to 0. This allows a
user to insert arbitrary data into these fields, which will be emitted as part of a Fill event.

When fillOrder is invoked, the actual asset transfer is carried out by four separate calls to
_dispatchTransferFrom , one each for the makerAsset , takerAsset , makerFee, and
takerFee transfers. Inside this function, validation of the assetData parameter is
performed. However, in the event that the call’s respective asset amount is 0, this function’s
entire body, including validation, is skipped entirely.

 function _dispatchTransferFrom (
 bytes32 orderHash ,
 bytes memory assetData ,
 address from ,
 address to ,
 uint256 amount
)
 internal
 {
 // Do nothing if no amount should be transferred.
 if (amount > 0) {
 // Ensure assetData length is valid
 if (assetData. length <= 3) {
 LibRichErrors. rrevert (LibExchangeRichErrors. AssetProxyDispatchError (

LibExchangeRichErrors.AssetProxyDispatchErrorCodes.INVALID_ASSET_DATA_LENGTH,
 orderHash,
 assetData
));
 }

Figure 10.1: _dispatchTransferFrom function signature and input validation.

Even if no makerFee (or takerFee) transfer occurs, the corresponding event emitted to log
this call to fillOrder includes the unvalidated assetData . Note that this issue only applies
to the maker or taker fees, and not the order amounts themselves, as orders with a 0
maker or taker amount are explicitly flagged as invalid.

 emit Fill (
 order.makerAddress,
 order.feeRecipientAddress,
 order.makerAssetData,

© 2019 Trail of Bits 0x Protocol Security Assessment | 45

 order.takerAssetData,
 order.makerFeeAssetData,
 order.takerFeeAssetData,
 orderHash,
 takerAddress,
 msg . sender ,
 fillResults.makerAssetFilledAmount,
 fillResults.takerAssetFilledAmount,
 fillResults.makerFeePaid,
 fillResults.takerFeePaid,
 fillResults.protocolFeePaid
);

Figure 10.2: The Fill event emitted as part of a successful call to fillOrder .

Exploit Scenario
Eve submits an order to the 0x Exchange with the makerFee set to 0 and the
makerAssetData set to arbitrary data. When her order is filled, an event is emitted
recording the erroneous makerAssetData value. This may have unintended side effects on
systems that expect the makerAssetData to adhere to a particular format.

Recommendation
Short term, perform basic validation of the asset data regardless of the amount being
transferred.

Long term, review every every field that is logged and make sure it is properly validated.

© 2019 Trail of Bits 0x Protocol Security Assessment | 46

11. MultiSigWallet does not check contract existence before call
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-0x-011
Target: multisig/contracts/src/MultiSigWallet.sol

Description
Within the MultiSigWallet contract, the _externalCall function is used to perform calls
to an external contract address. However, there is no check to ensure destination is a
contract. As a result, if the address provided is not a contract address, it will implicitly
return true .

 // call has been separated into its own function in order to take advantage
 // of the Solidity's code generator to produce a loop that copies tx.data into memory.
 function _externalCall (address destination , uint value , uint dataLength , bytes data)
internal returns (bool) {
 bool result;
 assembly {
 let x : = mload (0x40) // "Allocate" memory for output (0x40 is where "free
memory" pointer is stored by convention)
 let d : = add (data, 32) // First 32 bytes are the padded length of data, so
exclude that
 result : = call (
 sub (gas, 34710), // 34710 is the value that solidity is currently emitting
 // It includes callGas (700) + callVeryLow (3, to pay for
SUB) + callValueTransferGas (9000) +
 // callNewAccountGas (25000, in case the destination
address does not exist and needs creating)
 destination,
 value,
 d,
 dataLength, // Size of the input (in bytes) - this is what fixes the
padding problem
 x,
 0 // Output is ignored, therefore the output size is zero
)
 }
 return result;
 }

Figure 11.1: The _externalCall function definition.

Furthermore, the AssetProxyOwner derives from the MultiSigWalletWithTimelock , but
overloads the executeTransaction function (Figure 11.2), instead using
address(...).call . Even in this case, the destination is not validated as a contract.

 function executeTransaction (uint256 transactionId)
 public
 notExecuted (transactionId)
 fullyConfirmed (transactionId)
 {
...

© 2019 Trail of Bits 0x Protocol Security Assessment | 47

 uint256 transactionConfirmationTime = confirmationTimes[transactionId];
 for (uint i = 0 ; i != length; i ++) {
 // Ensure that each function call is past its timelock
 _assertValidFunctionCall (
 transactionConfirmationTime,
 data[i],
 destinations[i]
);
 // Call each function
 // solhint-disable-next-line avoid-call-value
 (bool didSucceed ,) = destinations[i].call. value (values[i])(data[i]);
 // Ensure that function call was successful
 require (
 didSucceed,
 "FAILED_EXECUTION"
);
...
 }

Figure 11.2: A snippet of the executeTransaction function definition.

Exploit Scenario
Ailce uses the MultiSigWallet wallet to submit a call to an address believed to be a
contract. Unbeknownst to Alice, the contract has been destroyed. Due to a lack of contract
existence checks in the MultiSigWallet , Alice's call returns a success even though it did
not successfully execute.

Recommendation
Short term, ensure all uses of call check the existence of a contract at the destination
address.

Long term, ensure this limitation is well documented and accounted for in any systems
depending on the MultiSigWallet .

© 2019 Trail of Bits 0x Protocol Security Assessment | 48

12. Potential over�low in transactionId allowing arbitrary execution of
transactions by a malicious owner
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-0x-012
Target: multisig/contracts/src/MultiSigWallet.sol

Description
The MultiSigWallet does not use SafeMath , resulting in the potential for overflow and
underflow of numeric values. This allows a malicious owner to overflow transactionId
through the use of submitTransaction , rewrite an existing transaction entry, increase the
now-overwritten transaction's confirmation, and potentially execute the overwritten
transaction.

When submitTransaction is executed (Figure 12.1), a transactionId is generated through
the invocation of _addTransaction .

 /// @dev Allows an owner to submit and confirm a transaction.
 /// @param destination Transaction target address.
 /// @param value Transaction ether value.
 /// @param data Transaction data payload.
 /// @return Returns transaction ID.
 function submitTransaction (address destination , uint value , bytes data)
 public
 returns (uint transactionId)
 {
 transactionId = _addTransaction (destination, value, data);
 confirmTransaction (transactionId);
 }

Figure 12.1: The submitTransaction function definition.

The _addTransaction function (Figure 12.2) creates a new entry within the transactions
mapping with the transactionCount as the ID. Subsequently, the transactionCount is
incremented. Since SafeMath is not used, the transactionCount can be overflowed into an
existing transactionId through repeated calling of submitTransaction .

 /// @dev Adds a new transaction to the transaction mapping, if transaction does not exist
yet.
 /// @param destination Transaction target address.
 /// @param value Transaction ether value.
 /// @param data Transaction data payload.
 /// @return Returns transaction ID.
 function _addTransaction (address destination , uint value , bytes data)
 internal
 notNull (destination)
 returns (uint transactionId)
 {
 transactionId = transactionCount;
 transactions[transactionId] = Transaction({
 destination: destination,

© 2019 Trail of Bits 0x Protocol Security Assessment | 49

 value: value,
 data: data,
 executed: false
 });
 transactionCount += 1 ;
 Submission (transactionId);
 }

Figure 12.2: The _addTransaction function definition, highlighting the overwriting of a
transaction with a particular transactionId .

After the _addTransaction function returns the transactionId , the transactionId is then
passed to the confirmTransaction function (Figure 12.3), automatically adding the
msg.sender to the mapping of confirmations, and subsequently attempting to execute the
transaction.

 /// @dev Allows an owner to confirm a transaction.
 /// @param transactionId Transaction ID.
 function confirmTransaction (uint transactionId)
 public
 ownerExists (msg . sender)
 transactionExists (transactionId)
 notConfirmed (transactionId, msg . sender)
 {
 confirmations[transactionId][msg . sender] = true ;
 Confirmation (msg . sender , transactionId);
 executeTransaction (transactionId);
 }

Figure 12.3: The confirmTransaction function definition.

If the transaction is now appropriately confirmed (which, assuming the original transaction
was, the newly replaced transaction is), the executeTransaction function (Figure 12.4) will
execute the transaction.

 /// @dev Allows anyone to execute a confirmed transaction.
 /// @param transactionId Transaction ID.
 function executeTransaction (uint transactionId)
 public
 ownerExists (msg . sender)
 confirmed (transactionId, msg . sender)
 notExecuted (transactionId)
 {
 if (isConfirmed (transactionId)) {
 Transaction storage txn = transactions[transactionId];
 txn.executed = true ;
 if (_externalCall (txn.destination, txn.value, txn.data. length , txn.data))
 Execution (transactionId);
 else {
 ExecutionFailure (transactionId);
 txn.executed = false ;
 }
 }
 }

© 2019 Trail of Bits 0x Protocol Security Assessment | 50

Figure 12.4: The executeTransaction function definition, highlighting the isConfirmed check,
which dynamically calculates confirmations relative to the current contract owners.

 /// @dev Returns the confirmation status of a transaction.
 /// @param transactionId Transaction ID.
 /// @return Confirmation status.
 function isConfirmed (uint transactionId)
 public
 constant
 returns (bool)
 {
 uint count = 0 ;
 for (uint i= 0 ; i < owners. length ; i ++) {
 if (confirmations[transactionId][owners[i]])
 count += 1 ;
 if (count == required)
 return true ;
 }
 }

Figure 12.5: The isConfirmed function definition, highlighting dynamic calculation of
confirmation counts.

Exploit Scenario
Alice, Bob, and Eve are owners of the MultiSigWallet , and two confirmations are required,
meaning two out of three owners must agree to submit any given transaction. Eve is a
malicious owner.

1. Alice submits a transaction with a transactionId of 1 .
2. Eve performs UINT256_MAX + 2 invocations of submitTransaction, which allows

Eve's submitted transaction to overwrite Alice's transactionId of 1 .
3. Eve's confirmation of the transaction is applied (happens implicitly upon

submission), and subsequently the transaction is executed.

If Eve's submitted transaction executes changeRequirement with an argument of 1 , the
other owners are no longer required to confirm a transaction. Eve can then submit
arbitrary transactions for execution without waiting for transaction confirmation by Alice
and Bob, such as those protected by the onlyWallet modifier. This can potentially be
performed in a single transaction if Eve’s address is a contract address.

While newly submitted transactions are the easiest exploitation of this problem, under
certain circumstances previously executed transactions can be overwritten and
re-executed. To expand on the previous example: If a transaction was previously executed
and the transaction was authorized by Alice and Charlie, but Charlie has since been
removed from the owner array, the exploit can still be performed by Eve.

Two aspects of the contract’s execution allow this:

© 2019 Trail of Bits 0x Protocol Security Assessment | 51

1. The dynamic calculation of isConfirmed no longer considers Charlie an owner and
disregards his confirmation, so the transaction is no longer confirmed until one
more owner confirms the transaction. Upon successful overflow of the previously
confirmed and executed transaction, Eve applies her confirmation, allowing
confirmation to meet the requirement again (2).

2. The previous transaction is overwritten with one where executed field is false. Thus,
the executeTransaction modifier notExecuted allows execution.

Due to the use of the uint256 type for the transactionId , this overflow is not realistically
exploitable with current execution constraints (Figure 12.6). However, if the
MultiSigWallet is modified to change the type of transactionId to a shorter-width
integer, exploitability may become easier.

>>>(2**256+1)/1000000/60/60/24/365
3671743063080802746815416825491118336290905145409708398004109081L

Figure 12.6: Calculations for the number of years required to exploit this functionality with a
uint256 transactionId , performing 1,000,000 transactions per second.

Recommendation
Short term, ensure all wallets deriving from the MultiSigWallet do not redefine
transactionId to be shorter than a uint256 .

Long term, use SafeMath to avoid potential overflows. Properly test for integer overflows
using Echidna or Manticore.

© 2019 Trail of Bits 0x Protocol Security Assessment | 52

13. Specification-Code mismatch for AssetProxyOwner timelock period
Severity: High Difficulty: Low
Type: Documentation Finding ID: TOB-0x-013
Target: multisig/contracts/src/{AssetProxyOwner,
MultiSigWalletWithTimeLock}.sol

Description
The specification for AssetProxyOwner says : " The AssetProxyOwner is a time-locked
multi-signature wallet that has permission to perform administrative functions within the
protocol. Submitted transactions must pass a 2 week timelock before they are executed. "

The MultiSigWalletWithTimeLock.sol and AssetProxyOwner.sol contracts'
timelock-period implementation/usage does not enforce the two-week period, but is
instead configurable by the wallet owner without any range checks. Either the specification
is outdated (most likely), or this is a serious flaw.

Exploit Scenario
Assuming the specification is correct and indeed expects a two-week timelock: Alice, Bob
and Eve are the owners of AssetProxyOwner , which has been configured with a timelock
period of one day. One of them submits a transaction assuming a timelock period of two
weeks, but it can be executed after one day, which is not what they expect according to the
specification.

Recommendation
Short term, implement the necessary range checks to enforce the timelock described in the
specification. Otherwise correct the specification to match the intended behavior.

Long term, make sure implementation and specification are in sync. Use Echidna or
Manticore to test that your code properly implements the specification.

© 2019 Trail of Bits 0x Protocol Security Assessment | 53

https://github.com/0xProject/0x-protocol-specification/blob/3.0/v3/v3-specification.md#assetproxyowner

14. Potential over�low in MultiSigWalletWithTimelock when calculating
whether the timelock has passed
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-0x-014
Target: multisig/contracts/src/MultiSigWalletWithTimeLock.sol

Description
Within the pastTimeLock modifier, a require statement validates that a transaction’s
timelock has passed. However, an overflow is possible when calculating the amount of time
that must pass for a given lock to be unlocked due to the lack of SafeMath use.

 modifier pastTimeLock (uint256 transactionId) {
 require (
 block.timestamp >= confirmationTimes[transactionId] + secondsTimeLocked ,
 "TIME_LOCK_INCOMPLETE"
);
 _ ;
 }

Figure 14.1: The pastTimeLock modifier definition, highlighting the addition of the
confirmationTime for a given transaction with the secondsTimeLocked without the use of

SafeMath .

Exploit Scenario
Alice and Eve are owners of the MultiSigWalletWithTimelock . Alice wishes to set the
timelock to be unlocked at a date which will virtually never be encountered, allowing the
wallet to be abandoned. Accordingly, Alice submits a transaction to execute
changeTimeLock with a large number. Eve knows this submitted transaction will cause an
overflow, allowing immediate execution of previously locked transactions. Eve confirms
and executes Alice’s transaction, and is now able to execute previously locked transactions.

Recommendation
Short term, use SafeMath when performing calculations in the wallet contracts.

Long term, ensure proper testing is applied to the wallet contracts. Vulnerabilities in these
contracts could have far-reaching effects, especially on controlling aspects of the 0x
exchange and staking systems.

© 2019 Trail of Bits 0x Protocol Security Assessment | 54

15. Rounding division errors can accumulate over partial fills
Severity: Informational Difficulty: Medium
Type: Numerics Finding ID: TOB-0x-015
Target: exchange-libs/contracts/src/LibFillResults.sol

Description
The accumulation of rounding errors can produce unexpected results over a number of
partial fills. In certain situations where the taker asset amount is large and the partial fills
are made with very small values, it is possible to accumulate the rounding errors to pay
less to the taker and fees address.

The computation of the amounts to transfer for the taker, maker, and fees is performed in
the calculateFillResults function:

 function calculateFillResults (

 LibOrder.Order memory order,

 uint256 takerAssetFilledAmount ,

 uint256 protocolFeeMultiplier ,

 uint256 gasPrice

)

 internal

 pure

 returns (FillResults memory fillResults)

 {

 // Compute proportional transfer amounts

 fillResults.takerAssetFilledAmount = takerAssetFilledAmount;

 fillResults.makerAssetFilledAmount = LibMath. safeGetPartialAmountFloor (

 takerAssetFilledAmount,

 order.takerAssetAmount,

 order.makerAssetAmount

);

 fillResults.makerFeePaid = LibMath. safeGetPartialAmountFloor (

 takerAssetFilledAmount,

 order.takerAssetAmount,

 order.makerFee

);

 fillResults.takerFeePaid = LibMath. safeGetPartialAmountFloor (

 takerAssetFilledAmount,

 order.takerAssetAmount,

 order.takerFee

);

© 2019 Trail of Bits 0x Protocol Security Assessment | 55

 // Compute the protocol fee that should be paid for a single fill.

 fillResults.protocolFeePaid = gasPrice. safeMul (protocolFeeMultiplier);

 return fillResults;

 }

Figure 15.1: The calculateFillResults function.

It is important to note that the takerAssetFilledAmount is completely controlled by the
sender, and remaining values are computed using safeGetPartialAmountFloor . This
function calculates the corresponding amount to transfer, ensuring that the rounding error
is less than 0.1%:

 function safeGetPartialAmountFloor (

 uint256 numerator ,

 uint256 denominator ,

 uint256 target

)

 internal

 pure

 returns (uint256 partialAmount)

 {

 if (isRoundingErrorFloor (

 numerator,

 denominator,

 target

)) {

 LibRichErrors. rrevert (LibMathRichErrors. RoundingError (

 numerator,

 denominator,

 target

));

 }

 partialAmount = numerator. safeMul (target). safeDiv (denominator);

 return partialAmount;

 }

Figure 15.2: The safeGetPartialAmountFloor function.

© 2019 Trail of Bits 0x Protocol Security Assessment | 56

However, although the rounding error is bounded, it can be accumulated over partial fills.
In particular, the partialAmount can be zero, so maker and fee amounts can be zero if the
takerAssetAmount is very large.

Exploit Scenario
A malicious user can perform several small partial fills of an order to avoid paying the
corresponding amount to the taker and/or the fees. For instance, she can create an order
with takerAssetAmount = 999,910,000,000,000 and makerAssetAmount =
1,000,000,000. To exploit the rounding issue, she will make partial fills with
10,000,000,000 tokens each one. This should work since the relative rounding error is less
than 0.01%:

>>> round(((10000000000*1000000000./999910000000000) -

floor(10000000000*1000000000./999910000000000)) /

(10000000000*1000000000./999910000000000),5)*100

0.009000000000000001

This will require a large amount of transactions to fill this order: 99,991 to be exact. At the
end, the taker should receive 1,000,000,000, however, it will receive:

>>> floor(999910000000000/10000000000) * floor(10000000000*1000000000/999910000000000)

999910000

As a result of this, the taker will receive 90,000 tokens less than expected.

Recommendation
Short term, select a proper bound for the accumulated rounding error, add code to keep
track of it for each order and disallow a partial fill if it increases beyond the bound.

Long term, use Echidna or Manticore to test for properties that could fail after a sequence
of transactions.

© 2019 Trail of Bits 0x Protocol Security Assessment | 57

16. The Cobb – Douglas function is not properly documented and reverts with
valid parameters
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-0x-016
Target: contracts/staking/contracts/src/libs/LibCobbDouglas.sol

Description
Documentation indicates that the Cobb–Douglas function (Figure 16.2) should not revert
for inputs within bounds as described in Figure 16.1. However, it appears that there are
inputs which lead the function to revert, as described in Figure 16.3. This issue was directly
identified using Echidna, our property based testing tool for smart contracts.

totalRewards < bound
fees <= totalFees < bound && totalFees > 0
stake <= totalStake < bound && totalStake > 0
alphaNumerator <= alphaDenominator < bound && alphaDenominator > 0
where bound = 0x200000000000000000000000000000000

Figure 16.1: The expected bounds for the Cobb–Douglas function.

 function cobbDouglas (
 uint256 totalRewards ,
 uint256 ownerFees ,
 uint256 totalFees ,
 uint256 ownerStake ,
 uint256 totalStake ,
 uint256 alphaNumerator ,
 uint256 alphaDenominator
)
 internal
 pure
 returns (uint256 ownerRewards)
 {
 int256 feeRatio = LibFixedMath. _toFixed (ownerFees, totalFees);
 int256 stakeRatio = LibFixedMath. _toFixed (ownerStake, totalStake);
 if (feeRatio == 0 || stakeRatio == 0) {
 return ownerRewards = 0 ;
 }
...
 int256 n = feeRatio <= stakeRatio ?
 LibFixedMath. _div (feeRatio, stakeRatio) :
 LibFixedMath. _div (stakeRatio, feeRatio);
 n = LibFixedMath. _exp (
 LibFixedMath. _mulDiv (
 LibFixedMath. _ln (n),
 int256 (alphaNumerator),
 int256 (alphaDenominator)
)
);
...
 n = feeRatio <= stakeRatio ?
 LibFixedMath. _mul (stakeRatio, n) :

© 2019 Trail of Bits 0x Protocol Security Assessment | 58

 LibFixedMath. _div (stakeRatio, n);
 // Multiply the above with totalRewards.
 ownerRewards = LibFixedMath. _uintMul (n, totalRewards);
 }
}

Figure 16.2: A snippet of the cobbDouglas function, highlighting actual value computations.

cobbdouglas(0,0,5192296858534827628530496329220096,340282366920938463463374
607431768211456,340282366920938463463374607431768211456,0,134217728)

Figure 16.3: An input leading to revert in the cobbDouglas function found by Echidna.

Exploit Scenario
Any contract using the cobbDouglas function to compute fee-based rewards for staking
pools can unexpectedly revert even if the input parameters are valid, potentially blocking
essential operations and leaving the contract in an invalid state.

Recommendation
Short term, reduce the bound value for the parameters and properly document the input
constraints for this function. We suggest the use of 2**127-1 as bound, but the
LibFixedMath library should be reviewed for potential issues before confirming this value.

Long term, use Echidna and Manticore to make sure the arithmetic computations return
expected results and do not revert.

© 2019 Trail of Bits 0x Protocol Security Assessment | 59

17. Unclear documentation on how order filling can fail
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-0x-017
Target: 0x Protocol 3.0 specification,
exchange/contracts/src/MixinExchangeCore.sol

Description
The 0x documentation is unclear about how to determine whether orders are fillable or
not. Even some fillable orders cannot be completely filled.

The 0x specification does not state clearly enough how fillable orders are determined. The
getOrderInfo function can be used to learn whether an order is fillable or not:

function getOrderInfo (LibOrder.Order memory order)

 public

 view

 returns (LibOrder.OrderInfo memory orderInfo)

{

 // Compute the order hash and fetch the amount of takerAsset that has already been

filled

 (orderInfo.orderHash, orderInfo.orderTakerAssetFilledAmount) =

_getOrderHashAndFilledAmount (order);

 // If order.makerAssetAmount is zero, we also reject the order.

 // While the Exchange contract handles them correctly, they create

 // edge cases in the supporting infrastructure because they have

 // an 'infinite' price when computed by a simple division.

 if (order.makerAssetAmount == 0) {

 orderInfo.orderStatus = uint8 (LibOrder.OrderStatus.INVALID_MAKER_ASSET_AMOUNT);

 return orderInfo;

 }

 // If order.takerAssetAmount is zero, then the order will always

 // be considered filled because 0 == takerAssetAmount == orderTakerAssetFilledAmount

 // Instead of distinguishing between unfilled and filled zero taker

 // amount orders, we choose not to support them.

 if (order.takerAssetAmount == 0) {

 orderInfo.orderStatus = uint8 (LibOrder.OrderStatus.INVALID_TAKER_ASSET_AMOUNT);

 return orderInfo;

© 2019 Trail of Bits 0x Protocol Security Assessment | 60

 }

 // Validate order availability

 if (orderInfo.orderTakerAssetFilledAmount >= order.takerAssetAmount) {

 orderInfo.orderStatus = uint8 (LibOrder.OrderStatus.FULLY_FILLED);

 return orderInfo;

 }

 // Validate order expiration

 // solhint-disable-next-line not-rely-on-time

 if (block . timestamp >= order.expirationTimeSeconds) {

 orderInfo.orderStatus = uint8 (LibOrder.OrderStatus.EXPIRED);

 return orderInfo;

 }

 // Check if order has been cancelled

 if (cancelled[orderInfo.orderHash]) {

 orderInfo.orderStatus = uint8 (LibOrder.OrderStatus.CANCELLED);

 return orderInfo;

 }

 if (orderEpoch[order.makerAddress][order.senderAddress] > order.salt) {

 orderInfo.orderStatus = uint8 (LibOrder.OrderStatus.CANCELLED);

 return orderInfo;

 }

 // All other statuses are ruled out: order is Fillable

 orderInfo.orderStatus = uint8 (LibOrder.OrderStatus.FILLABLE);

 return orderInfo;

 }

Figure 17.1: The getOrderInfo function.

However, even if the order appears to be fillable, the fillOrder code can revert for a
variety of reasons:

© 2019 Trail of Bits 0x Protocol Security Assessment | 61

Figure 17.2: List of possible revert causes in the fillOrder function.

While this list seems complete, it does not mention exactly where the errors are triggered
or how to avoid some of them. For instance, if the RoundingError is triggered, there is no
easy way to know exactly which computation caused it, and it’s not specified how a user
should overcome it. Additionally, a revert caused by overflow in the calculation of the
maker/taker/fee amounts can even block valid orders from being completely filled. This
error is caused by the safeGetPartialAmountFloor code when the partialAmount is
calculated multiplying two amounts that can overflow (e.g., takerAssetFilledAmount and
order.makerAssetAmount).

 function safeGetPartialAmountFloor (

 uint256 numerator ,

 uint256 denominator ,

 uint256 target

)

 internal

 pure

 returns (uint256 partialAmount)

 {

 if (isRoundingErrorFloor (

 numerator,

 denominator,

 target

)) {

 LibRichErrors. rrevert (LibMathRichErrors. RoundingError (

© 2019 Trail of Bits 0x Protocol Security Assessment | 62

 numerator,

 denominator,

 target

));

 }

 partialAmount = numerator. safeMul (target). safeDiv (denominator);

 return partialAmount;

 }

Figure 17.3: The safeGetPartialAmountFloor function.

Exploit Scenario
Alice wants to fill an order, but she is unable to determine if an order is fillable without
actually filling it. Her order has takerAssetAmount = 99991 and makerAssetAmount =
5000 . She will make partial fills with 20 tokens each one. This should work since the relative
rounding error is less than 0.01%:

>>> round(((20*5000./99991) - floor(20*5000./99991)) / (20*5000./99991),5)*100

0.009000000000000001

However, the order cannot be exactly completed with these partial fills, since:

>>> floor(99991 / 20) * 20

99980.0

Alice needs to fill that additional 11 tokens. However fillOrder will fail, since the relative
error will be too large. As a result of that, Alice will have no way to complete the order and
she will have no other alternative than to cancel it. Moreover, there will be no additional
information or documentation on why her order fails or how to overcome the error.

Recommendation
Short term, define a proper procedure to determine if an order is fillable and document it
in the protocol specification. If necessary, warn the user about potential constraints on the
orders.

Long term, use Echidna or Manticore to test that fillOrder never reverts when the order
is valid and is used to fully fill an order.

© 2019 Trail of Bits 0x Protocol Security Assessment | 63

18. Potential single point of failure for "read-only-mode" and
"catastrophic-failure-mode"
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-0x-018
Target: staking/contracts/src/ { StakingProxy, ZrxVault}.sol

Description
The critical read-only-mode and catastrophic-failure-mode can be activated by users who
are authorized by the owners of StakingProxy.sol and ZrxVault.sol respectively.

There could be a single point of failure (insider threat or a centralisation risk) if these
owners or their authorized users are controlled by EOAs and not a m-of-n M ultiSig wallet,
where such accounts accidentally/maliciously trigger the read-only-mode and/or
catastrophic-failure-mode.

Exploit Scenario
StakingProxy.sol and ZrxVault.sol owner accounts are EOAs controlled by private keys.
Alice gets hold of these keys and triggers the read-only-mode and
catastrophic-failure-mode causing the exchange to stop charging protocol fees, staking
contract set to read-only mode, ZRX vault detached from the staking contract and allowing
users to withdraw their funds from the ZRX vault directly.

Recommendation
Ensure critical contract (e.g., StakingProxy.sol and ZrxVault.sol) owners are not EOAs
but are m-of-n M ultiSig wallets where m >= 2, so that a single account cannot
accidentally/maliciously trigger these extreme scenarios.

© 2019 Trail of Bits 0x Protocol Security Assessment | 64

19. ERC20 reverts during certain self-transfer
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-0x-019
Target: erc20/contracts/src/ERC20.sol

Description
If the amount of tokens to do a self-transfer using a transfer/transferFrom call is larger
than 2**128, the transfer will fail. This breaks invariants expected of transfer functions.

Traditionally, the transferFrom method moves tokens from one account to another,
provided the source account has approved the sender to send such an amount using the
ERC20 method approve . However, the transferFrom function in WETH9’s ERC20 token
does not require approval if the sender is the source of the account:

 function transfer (address _to , uint256 _value)

 external

 returns (bool)

 {

 require (

 balances[msg . sender] >= _value,

 "ERC20_INSUFFICIENT_BALANCE"

);

 require (

 balances[_to] + _value >= balances[_to],

 "UINT256_OVERFLOW"

);

 balances[msg . sender] -= _value;

 balances[_to] += _value;

 emit Transfer (

 msg . sender ,

 _to,

 _value

);

 return true ;

© 2019 Trail of Bits 0x Protocol Security Assessment | 65

 }

Figure 19.1: The transfer function.

Although it may seem intuitive to allow the owner of the account balance to transfer funds
without approval, external tooling may rely on invariants which are now broken.

Exploit Scenario
The 0x teams extensively uses the ERC20 contract for testing. If a token transfer
unexpectedly reverts, it can hide a severe bug that can be triggered by a correctly
implemented ERC20 token. While self-transfers are not commonly utilized by users, they
are useful for testing, so it’s normal to assume that they will not revert in a testing
environment.

Recommendation
Short term, re-implement the transfer and transferFrom to allow self-transfers in each
possible context if the balance is enough.

Long term, use Echidna to review the ERC20 specification and verify your contracts meet
the standard. When interfacing with external ERC20 tokens, be wary of popular tokens that
do not properly implement the standard (e.g., many tokens do not include return values for
approve , transfer , transferFrom , etc.).

© 2019 Trail of Bits 0x Protocol Security Assessment | 66

https://github.com/crytic/echidna
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca

20. _assertStakingPoolExists never returns true
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-0x-020
Target: staking/contracts/src/staking_pools/MixinStakingPool.sol

Description
The _assertStakingPoolExists should return a bool to determine if the staking pool exists or
not; however, it only returns false or reverts.

The _assertStakingPoolExists function checks that a staking pool exists given a pool id
parameter:

 /// @dev Reverts iff a staking pool does not exist.

 /// @param poolId Unique id of pool.

 function _assertStakingPoolExists (bytes32 poolId)

 internal

 view

 returns (bool)

 {

 if (_poolById[poolId].operator == NIL_ADDRESS) {

 // we use the pool's operator as a proxy for its existence

 LibRichErrors. rrevert (

 LibStakingRichErrors. PoolExistenceError (

 poolId,

 false

)

);

 }

 }

Figure 20.1: The _assertStakingPoolExists function.

However, this function does not use a return statement and therefore, it will always return
false or revert.

Exploit Scenario
The 0x teams uses _assertStakingPoolExists to check if a staking pool exists in order to
verify the return value of this function. Since this function always returns false, the
deployed contract will not work as expected and the contract will have to be upgraded or
redeployed.

Recommendation

© 2019 Trail of Bits 0x Protocol Security Assessment | 67

Short term, add a return statement or remove the return type. Properly adjust the
documentation, if needed.

Long term, use Slither to detect when functions are missing appropriate return statements.

© 2019 Trail of Bits 0x Protocol Security Assessment | 68

https://github.com/crytic/slither

21. Calls to setParams may set invalid values and produce unexpected
behavior in the staking contracts
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-0x-021
Target: staking/contracts/src/sys/MixinParams.sol

Description
Certain parameters of the contracts can be configured to invalid values, causing a variety of
issues and breaking expected interactions between contracts.

setParams allows the owner of the staking contracts to reparameterize critical parameters.
However, reparameterization lacks sanity/threshold/limit checks on all parameters. Once a
parameter change is performed, the _setParams function will set up the new values as
shown in Figure 21.1.

function _setParams (

 uint256 _epochDurationInSeconds ,

 uint32 _rewardDelegatedStakeWeight ,

 uint256 _minimumPoolStake ,

 uint256 _maximumMakersInPool ,

 uint32 _cobbDouglasAlphaNumerator ,

 uint32 _cobbDouglasAlphaDenominator

)

 private

{

 epochDurationInSeconds = _epochDurationInSeconds;

 rewardDelegatedStakeWeight = _rewardDelegatedStakeWeight;

 minimumPoolStake = _minimumPoolStake;

 maximumMakersInPool = _maximumMakersInPool;

 cobbDouglasAlphaNumerator = _cobbDouglasAlphaNumerator;

 cobbDouglasAlphaDenominator = _cobbDouglasAlphaDenominator;

 emit ParamsSet (

 _epochDurationInSeconds,

 _rewardDelegatedStakeWeight,

 _minimumPoolStake,

 _maximumMakersInPool,

 _cobbDouglasAlphaNumerator,

 _cobbDouglasAlphaDenominator

);

}

Figure 21.1: The _setParams function.

© 2019 Trail of Bits 0x Protocol Security Assessment | 69

Critical staking parameters are reparameterized without any sanity/threshold/limit checks.

Exploit Scenario
This issue has two exploit scenarios:

● Scenario 1 . Alice is the owner of the staking contracts and decides to update the
parameters. However, she accidentally includes invalid values for
cobbDouglasAlphaNumerator or cobbDouglasAlphaDenominator parameters. After
the update, any contract depending on the cobbDouglas function will return invalid
values or revert, breaking several important interactions between them.

● Scenario 2 . Alice wants to either start a new pool or join one. She makes
estimations based on the current parameters to determine if it is economically
viable to invest. At the same time, the owner of the staking contracts, Bob, is
deciding to change some parameters. Alice decides to interact with the contracts at
the same time that the parameters are changed. As a result, Alice’s decision could
lead to an economic loss for her.

Recommendation
Short term, add proper validation checks on all parameters in setParams . If the validation
procedure is unclear or too complex to implement on-chain, document the potential issues
that could produce invalid values.

Long term, use Echidna and Manticore to locate missing parameter checks.

© 2019 Trail of Bits 0x Protocol Security Assessment | 70

22. Malicious non-operator maker can decrease staking pool operator share
Severity: Informational Difficulty: Medium
Type: Access Controls Finding ID: TOB-0x-022
Target: staking/contracts/src/staking_pools/MixinStakingPool.sol

Description
Every staking pool has one operator who manages the pool of delegates and market
makers. These makers credit the protocol fees their orders generate toward the pool. Note
that according to discussion with the 0x Protocol team, all non-operator maker addresses
are intended to be controlled by the operator. However, this is not documented anywhere
and may lead to confusion for operators as to the purpose of the role and they may
approve requests by third-party makers to join the pool.

Staking rewards are calculated based on the amount of ZRX staked by the pool as well as
the amount of protocol fees the pool brings in to the ecosystem. When the rewards are
distributed, a set portion goes to the operator while the rest is split among the delegates
according to their stake. The operator sets their share when they create the pool and
although the operator’s share can be modified afterwards, it can only be reduced.

 /// @dev Decreases the operator share for the given pool (i.e. increases pool rewards for
members).
 /// @param poolId Unique Id of pool.
 /// @param newOperatorShare The newly decreased percentage of any rewards owned by the
operator.
 function decreaseStakingPoolOperatorShare (bytes32 poolId , uint32 newOperatorShare)
 external
 onlyStakingPoolOperatorOrMaker (poolId)
 {
 // load pool and assert that we can decrease
 uint32 currentOperatorShare = _poolById[poolId].operatorShare;
 _assertNewOperatorShare (
 poolId,
 currentOperatorShare,
 newOperatorShare
);

 // decrease operator share
 _poolById[poolId].operatorShare = newOperatorShare;

Figure 22.1: The decreaseStakingPoolOperatorShare function.

The function that permits the operator share to be reduced,
decreaseStakingPoolOperatorShare , can currently be called by the pool operator or any
of the makers linked to that pool. The ability for the makers to also call this function seems
unintended, as the makers would then be incentivized to do so in order to increase their
share of the rewards.

 /// @dev Asserts that the sender is the operator of the input pool or the input maker.
 /// @param poolId Pool sender must be operator of.
 modifier onlyStakingPoolOperatorOrMaker (bytes32 poolId) {

© 2019 Trail of Bits 0x Protocol Security Assessment | 71

 _assertSenderIsPoolOperatorOrMaker (poolId);
 _ ;
 }

Figure 22.2: The onlyStakingPoolOperatorOrMaker modifier.

Exploit Scenario
Alice is the operator of a successful pool. Bob wishes to join her pool as a maker. Alice
approves his request to join and Bob proceeds to reduce Alice's share of the staking
rewards to 0. Alice notices this and is forced to recreate her pool, and users will have to
move their stake to the new pool.

Recommendations
Short term, document the purpose of the non-operator maker role within a staking pool
and caution operators against allowing third-party makers to join.

Long term, remove the ability for non-operator makers to perform administrative functions
within a pool by creating a new modifier onlyStakingPoolOperator and use it to restrict
calls to decreaseStakingPoolOperatorShare .

© 2019 Trail of Bits 0x Protocol Security Assessment | 72

23. Non-operator makers can add or remove other makers
Severity: Informational Difficulty: Medium
Type: Access Controls Finding ID: TOB-0x-023
Target: staking/contracts/src/staking_pools/MixinStakingPool.sol

Description
Every staking pool has one operator who manages the pool of delegates and market
makers. These makers credit the protocol fees their orders generate toward the pool.
Provided there is room in the pool, a maker can request to join it. Note that according to
discussion with the 0x Protocol team, all non-operator maker addresses are intended to be
controlled by the operator. However, this is not documented anywhere and may lead to
confusion for operators as to the purpose of the role and they may approve requests by
third-party makers to join the pool.

 /// @dev Allows caller to join a staking pool if already assigned.
 /// @param poolId Unique id of pool.
 function joinStakingPoolAsMaker (bytes32 poolId)
 external
 {
 // Is the maker already in a pool?
 address makerAddress = msg . sender ;
 IStructs.MakerPoolJoinStatus memory poolJoinStatus =
_poolJoinedByMakerAddress[makerAddress];
 if (poolJoinStatus.confirmed) {
 LibRichErrors. rrevert (LibStakingRichErrors. MakerPoolAssignmentError (

LibStakingRichErrors.MakerPoolAssignmentErrorCodes.MakerAddressAlreadyRegistered,
 makerAddress,
 poolJoinStatus.poolId
));
 }

 poolJoinStatus.poolId = poolId;
 _poolJoinedByMakerAddress[makerAddress] = poolJoinStatus;

 }

Figure 23.1: The joinStakingPoolAsMaker function.

This request, according to the code comments in Figure 23.2 below, must be approved only
by the pool operator. Additionally, it should only be possible for makers to be removed
from the pool by the pool operator or by their own choice (e.g., if they wish to join a
different pool as a maker instead).

 /// @dev Adds a maker to a staking pool. Note that this is only callable by the pool
operator.
 /// Note also that the maker must have previously called joinStakingPoolAsMaker.
 /// @param poolId Unique id of pool.
 /// @param makerAddress Address of maker.
 function addMakerToStakingPool (
 bytes32 poolId ,
 address makerAddress
)

© 2019 Trail of Bits 0x Protocol Security Assessment | 73

 external
 onlyStakingPoolOperatorOrMaker (poolId)

Figure 23.2: The addMakerToStakingPool function declaration.

 /// @dev Removes a maker from a staking pool. Note that this is only callable by the pool
operator or maker.
 /// Note also that the maker does not have to *agree* to leave the pool; this action is
 /// at the sole discretion of the pool operator.
 /// @param poolId Unique id of pool.
 /// @param makerAddress Address of maker.
 function removeMakerFromStakingPool (
 bytes32 poolId ,
 address makerAddress
)
 external
 onlyStakingPoolOperatorOrMaker (poolId)

Figure 23.3: The removeMakerFromStakingPool function declaration.

However, currently the functions to add or remove a maker from a pool can be called by
any maker in the pool as permitted by the onlyStakingPoolOperatorOrMaker modifier.
This would allow a malicious maker to remove other makers from a pool. To recover from
this, because operators cannot unilaterally add makers to a pool, each of the individual
makers would have to request to join the pool again. This would potentially reduce the
amount of staking rewards a pool earns depending on how quickly it was noticed and
remedied. Malicious makers could also add other malicious makers to the pool without the
operator’s consent.

 /// @dev Asserts that the sender is the operator of the input pool or the input maker.
 /// @param poolId Pool sender must be operator of.
 modifier onlyStakingPoolOperatorOrMaker (bytes32 poolId) {
 _assertSenderIsPoolOperatorOrMaker (poolId);
 _ ;
 }

Figure 23.4: The onlyStakingPoolOperatorOrMaker modifier.

 /// @dev Asserts that the sender is the operator of the input pool or the input maker.
 /// @param poolId Pool sender must be operator of.
 function _assertSenderIsPoolOperatorOrMaker (bytes32 poolId)
 private
 view
 {
 address operator = _poolById[poolId].operator;
 if (
 msg . sender != operator &&
 getStakingPoolIdOfMaker (msg . sender) != poolId
) {
 LibRichErrors. rrevert (
 LibStakingRichErrors. OnlyCallableByPoolOperatorOrMakerError (
 msg . sender ,
 poolId
)
);
 }

© 2019 Trail of Bits 0x Protocol Security Assessment | 74

 }

Figure 23.4: The _assertSenderIsPoolOperatorOrMaker modifier.

Exploit Scenario
Alice and Bob each operate successful staking pools. Carol, a large staker (but not a maker)
in Bob’s pool, requests to join Alice's staking pool as a maker. Alice approves Carol's
request. Carol then removes all other makers from Alice's pool. Any orders that are filled
before those makers are able to rejoin Alice's pool do not contribute to Alice's pool's
staking rewards, but they indirectly increase Bob's pool's share. Since Carol is a large staker
in Bob’s pool, she also benefits from this.

Recommendations
Short term, document the purpose of the non-operator maker role within a staking pool
and caution operators against allowing third-party makers to join.

Long term, create a new modifier— onlyStakingPoolOperator —and use it to restrict calls
to addMakerToStakingPool . For removeMakerFromStakingPool , fix the
_assertSenderIsPoolOperatorOrMaker function to correctly check that msg.sender is the
makerAddress passed to removeMakerFromStakingPool , not simply any maker from that
pool. This will allow makers to only remove themselves while still allowing the operator to
remove any maker.

© 2019 Trail of Bits 0x Protocol Security Assessment | 75

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Documentation Related to documentation errors, omissions, or inaccuracies

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for

© 2019 Trail of Bits 0x Protocol Security Assessment | 76

client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2019 Trail of Bits 0x Protocol Security Assessment | 77

B. Code Quality Recommendations
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

General Recommendation

● Use updated versions of contracts instead of older, archived versions. There
are three contracts in asset-proxy/contracts/archive , all of which have updated
versions:

○ MixinAuthorizable.sol and Ownable.sol have updated versions in
utils/contracts/src/. These have exception handling using
LibRichErrors , which could be used instead.

○ In the case of MixinAssetProxyDispatcher.sol , the archived version
implements transferFrom in _dispatchTransferFrom() using assembly for
gas efficiency reasons, while the updated version uses Solidity. Unless there
is a good reason (such as gas efficiency) to have these two separate versions,
it is better to upgrade to the Solidity version, which is more readable and
auditable. If there are good reasons to use both assembly and Solidity, make
sure those reasons are documented.

exchange/contracts/src/MixinSignatureValidator.sol:
● Consider disallowing the approval of 0x0 in setSignatureValidatorApproval .

The zero address is an uninitialized value in EVM. Disallowing unexpected uses of
this value can help debug issues in smart contracts.

exchange/contracts/src/MixinWrapperFunctions.sol:

● The documentation on the executeTransaction and batchExecuteTransactions
function notes important functionality related to unused ETH , which
batchFillOrdersNoThrow , marketSellOrdersNoThrow , and
marketBuyOrdersNoThrow from exchange/contracts/src/MixinTransactions.sol
do not have. The documentation specifically states: "Refund any unused value (ETH)
that was sent with the message call (note: all intermediate refunds will be disabled until
this step)." This clarifies that intermediate refunds will be disabled until the very end.
The documentation should be reviewed for all of these functions and updated
where necessary.

exchange/contracts/src/MixinExchangeCore.sol:
● Consider reverting when orders are canceled. The use of fillOrder and

cancelOrder in invalid orders should be consistent. If this is not the case, it should
be clear in the user documentation why invalid orders can be canceled.

© 2019 Trail of Bits 0x Protocol Security Assessment | 78

exchange/contracts/utils/contracts/src/LibBytes.sol:
● Consider using SafeMath. There are multiple places where addition is performed

on index . There are cases (e.g., readAddress) where the index value may be tainted
by public functions.

staking/contracts/src/StakingProxy.sol:

● Consider checking for 0x0 in _attachStakingContract() . The zero address is an
uninitialized value in EVM. While batchExecute() has this check before invoking
delegatecall , it is safer to also add this check in _attachStakingContract() to
prevent the creation of an invalid stakingContract .

staking/contracts/src/StakingProxy.sol:

● Consider checking for contract existence before delegatecall . The two
instances of delegatecall in StakingProxy.sol do not perform a contract
existence check on the staking contract.

staking/contracts/src/sys/MixinFinalizer.sol:
● Consider using SafeMath. There are two places in MixinFinalizer.sol where

safeSub is not used for performing epoch - 1 . While neither instance leads to an
overflow currently because of a previous check for epoch == 0, it is safer to use
safeSub even here just in case the logic changes in future.

exchange/contracts/src/MixinMatching.sol:

● Consider reverting when an order is matched with itself. The matchOrder
function have a corner case that allows to match certain orders with themselves. It
is unclear what is the expected behaviour in that situation, so unless there is a
defined use case, we recommend to revert in that matching.

contracts/exchange/test/signature_validator.ts

● Implement a unit test to check for the preSign idempotency. The preSign
function should be idempotent if it is called more than once, but currently there is
no unit test to verify this property.

staking/contracts/src/immutable/MixinDeploymentConstants.sol

● Consider removing commented constants in MixinDeploymentConstants . The
constants such WETH_ADDRESS, WETH_ASSET_DATA and
WETH_ASSET_PROXY_ADDRESS in this contract should be carefully verified before
deploying it since they are quite easy to confuse with each other.

© 2019 Trail of Bits 0x Protocol Security Assessment | 79

C. Tool Improvements
This section details enhancements and fixes in our tools produced during the engagement.
These enhancements improved our ability to test the 0x contracts and increased the depth
of testing possible by using them.

Echidna

● Support for ABIEncoderV2 (PR) and fixes (PR).
● Improved initialization support when creating multiple contracts (PR).
● User contract addresses created by function calls in the generation of inputs (PR).
● Improved support for saving and loading single-transaction coverage (PR).
● Improved coverage detection using complete list of transactions (PR).

○ Improved support for saving and loading multi-transaction coverage.
○ New mutation modes for multiple transactions.
○ Optimized single-transaction mode for mutation and generation.

● Issues with fixes in development:
○ Echidna generates only transactions with tx.gasprice == 0 (Issue).
○ Echidna crashes when trying to call a nonexistent contract in the constructor

(Issue).
Manticore

● Fix for correct mulmod and addmod symbolic inputs (PR).
● A general approach to handle symbolic imprecisions (PR).

Slither

● Fix for parsing of infinite loops with break (PR)

© 2019 Trail of Bits 0x Protocol Security Assessment | 80

https://github.com/crytic/echidna/pull/284
https://github.com/crytic/echidna/pull/303
https://github.com/crytic/echidna/pull/293
https://github.com/crytic/echidna/pull/295
https://github.com/crytic/echidna/pull/297
https://github.com/crytic/echidna/pull/305
https://github.com/crytic/echidna/issues/304
https://github.com/crytic/echidna/issues/296
https://github.com/crytic/echidna/pull/303
https://github.com/trailofbits/manticore/pull/1526
https://github.com/crytic/slither/pull/329

D. Formal verification using Manticore
Trail of Bits used Manticore , our open-source dynamic EVM analysis tool that takes
advantage of symbolic execution, to find issues in the Solidity components of 0x Protocol.
Symbolic execution allows us to explore program behavior in a broader way than classical
testing methods, such as fuzzing.

Trail of Bits used Manticore to determine if certain invalid contract states were feasible. In
particular, we verified that the safeGetPartialAmountFloor function cannot be used to
completely avoid paying the taker or the corresponding fees. This function is used to
compute the amount of partial amount of t to pay during a partial order fill. It has checks
to avoid a rounding error greater or equal than 0.1% during the computation of t*n/d .

We used Manticore to symbolically explore the safeGetPartialAmountFloor function from
the LibMath library using the following test harness:

import "../src/LibMath.sol" ;

contract CryticTestLibMath {

 function crytic_safeGetPartialAmountFloor (uint256 n , uint256 d , uint256 t) public returns

(bool) {

 if (n == 0 || d == 0 || t == 0 || n > d)

 return true ;

 uint p = LibMath. safeGetPartialAmountFloor (n,d,t);

 if (p > 0)

 return true ;

 return false ;

 }

}

Figure D.1: The crytic_safeGetPartialAmountFloor property.

Manticore was able to prove that there is no input that will falsify this property by
evaluating all the possible traces during the symbolic exploration.

The focus and the timeframe alloted for the engagement did not allow for further
development of Manticore verifications. We encourage 0x to continue using Manticore to
verify additional core properties..

© 2019 Trail of Bits 0x Protocol Security Assessment | 81

https://github.com/trailofbits/manticore

E. Integrating fuzzing into the development and testing cycle
During the audit, we made several improvements to Echidna , including one to save the
state of the fuzzing campaign when the campaign ends. Echidna can save the lists of
collected transactions with the corpusDir configuration keyword. For instance, after a
campaign to fuzz the LibBytes test finishes, the transactions are available for inspection:

[

Tx{_call =

 Left

 ("set",

 [AbiBytesDynamic

"\t\245W\140@\ESC\DC2\207\138\202\217\176\242\250.\SI\171\222\\\129H1"]),

 _src = 42424242, _dst = a329c0648769a73afac7f9381e08fb43dbea72,

 _gas' = 4294967295, _value = 0, _delay = (389523, 35832)},

 Tx{_call =

 Left

 ("publicWriteAddress",

 [AbiUInt 256 0,

 AbiAddress 1330211579262674796381903807458157140913234527569]),

 _src = 43434343, _dst = a329c0648769a73afac7f9381e08fb43dbea72,

 _gas' = 4294967295, _value = 0, _delay = (131536, 39671)}

]

Figure E.1: An example transaction output from Echidna.

This corpus of transactions can be used as input to future fuzzing campaigns, allowing
Echidna to reproduce the same coverage. During development, this increases confidence in
bug fixes and quickly detects regressions. This feature is also useful for continuous
integration testing systems. Once the fuzzing procedure has been tuned for speed,
integrate it into your CI as follows:

1. After the initial fuzzing campaign, save the corpus generated by every test.
2. For every internal milestone, new feature, or public release, re-run the fuzzing

campaign starting with the current corpora for each test for at least 24 hours.
3. Update the corpora with the new inputs generated.

Over time, the corpora will represent thousands of CPU hours of refinement, and will be
valuable for efficiently covering code with fuzz tests. An attacker could also use them to
quickly identify vulnerable code. To avoid this additional risk, keep the fuzzing corpora in
an access-controlled storage location rather than a public repository. For example, some CI

© 2019 Trail of Bits 0x Protocol Security Assessment | 82

systems allow maintainers to keep a cache to accelerate building and testing and the fuzz
test corpora could be stored there.

© 2019 Trail of Bits 0x Protocol Security Assessment | 83

